提交 0cc3d829 编写于 作者: H hedaoyuan

Add some comment of CrossMapNormalFunc

上级 4be5ffae
...@@ -112,11 +112,31 @@ void CrossMapNormalGrad<DEVICE_TYPE_CPU>(real* inputsGrad, ...@@ -112,11 +112,31 @@ void CrossMapNormalGrad<DEVICE_TYPE_CPU>(real* inputsGrad,
} }
/** /**
* \brief {o_0, o_1} = calc(i_0) * \brief Normalization with across maps.
* *
* \param inputs[0] input value. * This Function comes from the paper
* \param outputs[0] output value. * "ImageNet Classification with Deep Convolutional Neural Networks".
* \param outputs[1] denoms. *
* The original formula is:
*
* Input(x, y)
* Output(x, y) = ------------------------------------------------
* alpha /min(F, f-[N/2] + N)
* (1 + ----- * | (Input(x, y))^2 ) ^ (beta)
* N /max(0, f-[N/2])
*
* Argument in the Function:
* \param size_ represent N
* \param scale_ represent alpha / N
* \param pow_ represent beta
* \param inputs[0] represent Input
* \param outputs[0] represent Output
* \param outputs[1] represent The denominator in the formula(except beta)
*
* note:
* Save output[1] is to simplify the backward calculation.
* So, if only consider the forward calculation, we can optimize to
* remove the output[1].
*/ */
template <DeviceType Device> template <DeviceType Device>
class CrossMapNormalFunc : public FunctionBase { class CrossMapNormalFunc : public FunctionBase {
...@@ -161,13 +181,27 @@ private: ...@@ -161,13 +181,27 @@ private:
}; };
/** /**
* \brief {o_0} = calc(i_0, i_1, i_2, i_3) * \brief Backward calculation for normalization with across maps.
*
* The implementation of this Function is derived from the
* CrossMapNormalFunc implementation.
*
* InputGrad = OutputGrad * denoms ^ (-beta)
* /
* + | (OutputGrad * OutputValue * (-2 * alpha * beta) / denoms) * InputValue
* /
* *
* \param inputs[0] input value. * Argument in the Function:
* \param inputs[1] output value. * \param size_ represent N
* \param inputs[2] output grad. * \param scale_ represent alpha / N
* \param inputs[3] denoms. * \param pow_ represent beta
* \param outputs[0] input grad. * \param inputs[0] represent InputValue, inputs[0] of CrossMapNormalFunc
* \param inputs[1] represent OutputValue, outputs[0] of CrossMapNormalFunc
* \param inputs[2] represent OutputGrad
* \param inputs[3] represent denoms, outputs[1] of CrossMapNormalFunc
* This is the intermediate result that is
* preserved in the forward calculation.
* \param outputs[0] represent InputGrad
*/ */
template <DeviceType Device> template <DeviceType Device>
class CrossMapNormalGradFunc : public FunctionBase { class CrossMapNormalGradFunc : public FunctionBase {
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册