Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0cc3d829
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0cc3d829
编写于
1月 20, 2017
作者:
H
hedaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add some comment of CrossMapNormalFunc
上级
4be5ffae
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
44 addition
and
10 deletion
+44
-10
paddle/function/CrossMapNormalOp.cpp
paddle/function/CrossMapNormalOp.cpp
+44
-10
未找到文件。
paddle/function/CrossMapNormalOp.cpp
浏览文件 @
0cc3d829
...
...
@@ -112,11 +112,31 @@ void CrossMapNormalGrad<DEVICE_TYPE_CPU>(real* inputsGrad,
}
/**
* \brief
{o_0, o_1} = calc(i_0)
* \brief
Normalization with across maps.
*
* \param inputs[0] input value.
* \param outputs[0] output value.
* \param outputs[1] denoms.
* This Function comes from the paper
* "ImageNet Classification with Deep Convolutional Neural Networks".
*
* The original formula is:
*
* Input(x, y)
* Output(x, y) = ------------------------------------------------
* alpha /min(F, f-[N/2] + N)
* (1 + ----- * | (Input(x, y))^2 ) ^ (beta)
* N /max(0, f-[N/2])
*
* Argument in the Function:
* \param size_ represent N
* \param scale_ represent alpha / N
* \param pow_ represent beta
* \param inputs[0] represent Input
* \param outputs[0] represent Output
* \param outputs[1] represent The denominator in the formula(except beta)
*
* note:
* Save output[1] is to simplify the backward calculation.
* So, if only consider the forward calculation, we can optimize to
* remove the output[1].
*/
template
<
DeviceType
Device
>
class
CrossMapNormalFunc
:
public
FunctionBase
{
...
...
@@ -161,13 +181,27 @@ private:
};
/**
* \brief {o_0} = calc(i_0, i_1, i_2, i_3)
* \brief Backward calculation for normalization with across maps.
*
* The implementation of this Function is derived from the
* CrossMapNormalFunc implementation.
*
* InputGrad = OutputGrad * denoms ^ (-beta)
* /
* + | (OutputGrad * OutputValue * (-2 * alpha * beta) / denoms) * InputValue
* /
*
* \param inputs[0] input value.
* \param inputs[1] output value.
* \param inputs[2] output grad.
* \param inputs[3] denoms.
* \param outputs[0] input grad.
* Argument in the Function:
* \param size_ represent N
* \param scale_ represent alpha / N
* \param pow_ represent beta
* \param inputs[0] represent InputValue, inputs[0] of CrossMapNormalFunc
* \param inputs[1] represent OutputValue, outputs[0] of CrossMapNormalFunc
* \param inputs[2] represent OutputGrad
* \param inputs[3] represent denoms, outputs[1] of CrossMapNormalFunc
* This is the intermediate result that is
* preserved in the forward calculation.
* \param outputs[0] represent InputGrad
*/
template
<
DeviceType
Device
>
class
CrossMapNormalGradFunc
:
public
FunctionBase
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录