init.cc 8.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14
#include <string.h>  // for strdup
D
dzhwinter 已提交
15
#include <algorithm>
C
chengduo 已提交
16 17
#include <fstream>
#include <iostream>
Q
qingqing01 已提交
18 19
#include <memory>
#include <set>
D
dzhwinter 已提交
20
#include <stdexcept>
D
dzhwinter 已提交
21 22
#include <string>

Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/operator.h"
T
tensor-tang 已提交
24
#include "paddle/fluid/platform/cpu_helper.h"
T
tensor-tang 已提交
25
#include "paddle/fluid/platform/cpu_info.h"
26
#include "paddle/fluid/string/split.h"
S
sneaxiy 已提交
27
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
28
#include "paddle/fluid/platform/cuda_device_guard.h"
29
#include "paddle/fluid/platform/dynload/cupti.h"
S
sneaxiy 已提交
30
#endif
Y
Yi Wang 已提交
31
#include "paddle/fluid/platform/device_context.h"
32
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/platform/place.h"
34
#include "paddle/fluid/string/piece.h"
35

36
DECLARE_int32(paddle_num_threads);
37 38 39
DEFINE_int32(multiple_of_cupti_buffer_size, 1,
             "Multiple of the CUPTI device buffer size. If the timestamps have "
             "been dropped when you are profiling, try increasing this value.");
T
tensor-tang 已提交
40

41 42 43 44 45 46 47 48 49 50
namespace paddle {
namespace platform {

void ParseCommandLineFlags(int argc, char **argv, bool remove) {
  google::ParseCommandLineFlags(&argc, &argv, remove);
}

}  // namespace platform
}  // namespace paddle

D
dzhwinter 已提交
51 52 53
namespace paddle {
namespace framework {

54 55 56 57
#ifdef _WIN32
#define strdup _strdup
#endif

D
dzhwinter 已提交
58
std::once_flag gflags_init_flag;
59
std::once_flag glog_init_flag;
X
Xin Pan 已提交
60
std::once_flag p2p_init_flag;
61
std::once_flag glog_warning_once_flag;
D
dzhwinter 已提交
62

63
bool InitGflags(std::vector<std::string> args) {
64
  bool successed = false;
D
dzhwinter 已提交
65
  std::call_once(gflags_init_flag, [&]() {
C
chengduo 已提交
66
    FLAGS_logtostderr = true;
L
Leo Chen 已提交
67 68 69 70 71
    // NOTE(zhiqiu): dummy is needed, since the function
    // ParseNewCommandLineFlags in gflags.cc starts processing
    // commandline strings from idx 1.
    // The reason is, it assumes that the first one (idx 0) is
    // the filename of executable file.
72 73
    args.insert(args.begin(), "dummy");
    std::vector<char *> argv;
D
dzhwinter 已提交
74
    std::string line;
75 76 77 78
    int argc = args.size();
    for (auto &arg : args) {
      argv.push_back(const_cast<char *>(arg.data()));
      line += arg;
D
dzhwinter 已提交
79 80
      line += ' ';
    }
L
Leo Chen 已提交
81 82
    VLOG(1) << "Before Parse: argc is " << argc
            << ", Init commandline: " << line;
83 84

    char **arr = argv.data();
D
dzhwinter 已提交
85
    google::ParseCommandLineFlags(&argc, &arr, true);
86
    successed = true;
87 88

    VLOG(1) << "After Parse: argc is " << argc;
D
dzhwinter 已提交
89
  });
90
  return successed;
D
dzhwinter 已提交
91 92
}

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
void InitP2P(std::vector<int> devices) {
#ifdef PADDLE_WITH_CUDA
  std::call_once(p2p_init_flag, [&]() {
    int count = devices.size();
    for (int i = 0; i < count; ++i) {
      for (int j = 0; j < count; ++j) {
        if (devices[i] == devices[j]) continue;
        int can_acess = -1;
        PADDLE_ENFORCE(
            cudaDeviceCanAccessPeer(&can_acess, devices[i], devices[j]),
            "Failed to test P2P access.");
        if (can_acess != 1) {
          LOG(WARNING) << "Cannot enable P2P access from " << devices[i]
                       << " to " << devices[j];
        } else {
Y
Yu Yang 已提交
108
          platform::CUDADeviceGuard guard(devices[i]);
109 110 111 112 113 114 115 116
          cudaDeviceEnablePeerAccess(devices[j], 0);
        }
      }
    }
  });
#endif
}

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
void InitCupti() {
#ifdef PADDLE_WITH_CUPTI
  if (FLAGS_multiple_of_cupti_buffer_size == 1) return;
  size_t attrValue = 0, attrValueSize = sizeof(size_t);
#define MULTIPLY_ATTR_VALUE(attr)                                 \
  {                                                               \
    PADDLE_ENFORCE(!platform::dynload::cuptiActivityGetAttribute( \
        attr, &attrValueSize, &attrValue));                       \
    attrValue *= FLAGS_multiple_of_cupti_buffer_size;             \
    LOG(WARNING) << "Set " #attr " " << attrValue << " byte";     \
    PADDLE_ENFORCE(!platform::dynload::cuptiActivitySetAttribute( \
        attr, &attrValueSize, &attrValue));                       \
  }
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE);
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE_CDP);
#if CUDA_VERSION >= 9000
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_PROFILING_SEMAPHORE_POOL_SIZE);
#endif
#undef MULTIPLY_ATTR_VALUE
#endif
}

X
Xin Pan 已提交
139
void InitDevices(bool init_p2p) {
140 141 142
  // CUPTI attribute should be set before any CUDA context is created (see CUPTI
  // documentation about CUpti_ActivityAttribute).
  InitCupti();
143
  /*Init all available devices by default */
144
  std::vector<int> devices;
145
#ifdef PADDLE_WITH_CUDA
D
dzhwinter 已提交
146
  try {
147 148
    // use user specified GPUs in single-node multi-process mode.
    devices = platform::GetSelectedDevices();
D
dzhwinter 已提交
149 150
  } catch (const std::exception &exp) {
    LOG(WARNING) << "Compiled with WITH_GPU, but no GPU found in runtime.";
151
  }
D
dzhwinter 已提交
152
#endif
153
  InitDevices(init_p2p, devices);
D
dzhwinter 已提交
154 155
}

156 157 158 159
void InitDevices(bool init_p2p, const std::vector<int> devices) {
  std::vector<platform::Place> places;

  for (size_t i = 0; i < devices.size(); ++i) {
160 161 162
    // In multi process multi gpu mode, we may have gpuid = 7
    // but count = 1.
    if (devices[i] < 0) {
163 164 165
      LOG(WARNING) << "Invalid devices id.";
      continue;
    }
166

167 168 169 170 171 172 173
    places.emplace_back(platform::CUDAPlace(devices[i]));
  }
  if (init_p2p) {
    InitP2P(devices);
  }
  places.emplace_back(platform::CPUPlace());
  platform::DeviceContextPool::Init(places);
Q
qingqing01 已提交
174

175
#ifndef PADDLE_WITH_MKLDNN
T
tensor-tang 已提交
176
  platform::SetNumThreads(FLAGS_paddle_num_threads);
177
#endif
T
tensor-tang 已提交
178

T
tensor-tang 已提交
179
#if !defined(_WIN32) && !defined(__APPLE__) && !defined(__OSX__)
T
tensor-tang 已提交
180
  if (platform::MayIUse(platform::avx)) {
T
tensor-tang 已提交
181 182 183 184
#ifndef __AVX__
    LOG(WARNING) << "AVX is available, Please re-compile on local machine";
#endif
  }
185 186

// Throw some informations when CPU instructions mismatch.
187 188 189 190 191 192
#define AVX_GUIDE(compiletime, runtime)                                  \
  PADDLE_THROW(platform::errors::Unavailable(                            \
      "This version is compiled on higher instruction(" #compiletime     \
      ") system, you may encounter illegal instruction error running on" \
      " your local CPU machine. Please reinstall the " #runtime          \
      " version or compile from source code."))
193 194

#ifdef __AVX512F__
T
tensor-tang 已提交
195 196
  if (!platform::MayIUse(platform::avx512f)) {
    if (platform::MayIUse(platform::avx2)) {
197
      AVX_GUIDE(AVX512, AVX2);
T
tensor-tang 已提交
198
    } else if (platform::MayIUse(platform::avx)) {
199 200 201 202 203
      AVX_GUIDE(AVX512, AVX);
    } else {
      AVX_GUIDE(AVX512, NonAVX);
    }
  }
T
tensor-tang 已提交
204
#endif
205 206

#ifdef __AVX2__
T
tensor-tang 已提交
207 208
  if (!platform::MayIUse(platform::avx2)) {
    if (platform::MayIUse(platform::avx)) {
209 210 211 212
      AVX_GUIDE(AVX2, AVX);
    } else {
      AVX_GUIDE(AVX2, NonAVX);
    }
T
tensor-tang 已提交
213 214
  }
#endif
215 216

#ifdef __AVX__
T
tensor-tang 已提交
217
  if (!platform::MayIUse(platform::avx)) {
218
    AVX_GUIDE(AVX, NonAVX);
T
tensor-tang 已提交
219
  }
220 221
#endif
#undef AVX_GUIDE
T
tensor-tang 已提交
222 223

#endif
224 225
}

C
chengduo 已提交
226
#ifndef _WIN32
227
void SignalHandle(const char *data, int size) {
C
chengduo 已提交
228 229
  auto file_path = string::Sprintf("/tmp/paddle.%d.dump_info", ::getpid());
  try {
230 231
    // The signal is coming line by line but we print general guide just once
    std::call_once(glog_warning_once_flag, [&]() {
232 233 234 235 236
      LOG(WARNING) << "Warning: PaddlePaddle catches a failure signal, it may "
                      "not work properly\n";
      LOG(WARNING) << "You could check whether you killed PaddlePaddle "
                      "thread/process accidentally or report the case to "
                      "PaddlePaddle\n";
237 238 239
      LOG(WARNING) << "The detail failure signal is:\n\n";
    });

240
    LOG(WARNING) << std::string(data, size);
C
chengduo 已提交
241 242 243 244 245 246 247 248 249
    std::ofstream dump_info;
    dump_info.open(file_path, std::ios::app);
    dump_info << std::string(data, size);
    dump_info.close();
  } catch (...) {
  }
}
#endif

Y
Yang Yu 已提交
250
void InitGLOG(const std::string &prog_name) {
251 252 253 254
  std::call_once(glog_init_flag, [&]() {
    // glog will not hold the ARGV[0] inside.
    // Use strdup to alloc a new string.
    google::InitGoogleLogging(strdup(prog_name.c_str()));
C
chengduo 已提交
255
#ifndef _WIN32
256 257
    google::InstallFailureSignalHandler();
    google::InstallFailureWriter(&SignalHandle);
C
chengduo 已提交
258
#endif
259
  });
Y
Yang Yu 已提交
260 261
}

D
dzhwinter 已提交
262 263
}  // namespace framework
}  // namespace paddle