init.cc 7.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14
#include <string.h>  // for strdup
D
dzhwinter 已提交
15
#include <algorithm>
C
chengduo 已提交
16 17
#include <fstream>
#include <iostream>
Q
qingqing01 已提交
18 19
#include <memory>
#include <set>
D
dzhwinter 已提交
20
#include <stdexcept>
D
dzhwinter 已提交
21 22
#include <string>

Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/operator.h"
T
tensor-tang 已提交
24
#include "paddle/fluid/platform/cpu_helper.h"
T
tensor-tang 已提交
25
#include "paddle/fluid/platform/cpu_info.h"
26
#include "paddle/fluid/string/split.h"
S
sneaxiy 已提交
27
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
28
#include "paddle/fluid/platform/cuda_device_guard.h"
29
#include "paddle/fluid/platform/dynload/cupti.h"
S
sneaxiy 已提交
30
#endif
Y
Yi Wang 已提交
31
#include "paddle/fluid/platform/device_context.h"
32
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/platform/place.h"
34
#include "paddle/fluid/string/piece.h"
35

36
DECLARE_int32(paddle_num_threads);
37 38 39
DEFINE_int32(multiple_of_cupti_buffer_size, 1,
             "Multiple of the CUPTI device buffer size. If the timestamps have "
             "been dropped when you are profiling, try increasing this value.");
T
tensor-tang 已提交
40

D
dzhwinter 已提交
41 42 43
namespace paddle {
namespace framework {

44 45 46 47
#ifdef _WIN32
#define strdup _strdup
#endif

D
dzhwinter 已提交
48
std::once_flag gflags_init_flag;
X
Xin Pan 已提交
49
std::once_flag p2p_init_flag;
50
std::once_flag glog_warning_once_flag;
D
dzhwinter 已提交
51

52
void InitGflags(std::vector<std::string> argv) {
D
dzhwinter 已提交
53
  std::call_once(gflags_init_flag, [&]() {
C
chengduo 已提交
54
    FLAGS_logtostderr = true;
W
wanghaoshuang 已提交
55
    argv.insert(argv.begin(), "dummy");
D
dzhwinter 已提交
56 57 58 59 60 61 62 63 64
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
    for (size_t i = 0; i < argv.size(); i++) {
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
    google::ParseCommandLineFlags(&argc, &arr, true);
M
minqiyang 已提交
65
    VLOG(1) << "Init commandline: " << line;
D
dzhwinter 已提交
66 67 68
  });
}

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
void InitP2P(std::vector<int> devices) {
#ifdef PADDLE_WITH_CUDA
  std::call_once(p2p_init_flag, [&]() {
    int count = devices.size();
    for (int i = 0; i < count; ++i) {
      for (int j = 0; j < count; ++j) {
        if (devices[i] == devices[j]) continue;
        int can_acess = -1;
        PADDLE_ENFORCE(
            cudaDeviceCanAccessPeer(&can_acess, devices[i], devices[j]),
            "Failed to test P2P access.");
        if (can_acess != 1) {
          LOG(WARNING) << "Cannot enable P2P access from " << devices[i]
                       << " to " << devices[j];
        } else {
Y
Yu Yang 已提交
84
          platform::CUDADeviceGuard guard(devices[i]);
85 86 87 88 89 90 91 92
          cudaDeviceEnablePeerAccess(devices[j], 0);
        }
      }
    }
  });
#endif
}

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
void InitCupti() {
#ifdef PADDLE_WITH_CUPTI
  if (FLAGS_multiple_of_cupti_buffer_size == 1) return;
  size_t attrValue = 0, attrValueSize = sizeof(size_t);
#define MULTIPLY_ATTR_VALUE(attr)                                 \
  {                                                               \
    PADDLE_ENFORCE(!platform::dynload::cuptiActivityGetAttribute( \
        attr, &attrValueSize, &attrValue));                       \
    attrValue *= FLAGS_multiple_of_cupti_buffer_size;             \
    LOG(WARNING) << "Set " #attr " " << attrValue << " byte";     \
    PADDLE_ENFORCE(!platform::dynload::cuptiActivitySetAttribute( \
        attr, &attrValueSize, &attrValue));                       \
  }
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE);
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE_CDP);
#if CUDA_VERSION >= 9000
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_PROFILING_SEMAPHORE_POOL_SIZE);
#endif
#undef MULTIPLY_ATTR_VALUE
#endif
}

X
Xin Pan 已提交
115
void InitDevices(bool init_p2p) {
116 117 118
  // CUPTI attribute should be set before any CUDA context is created (see CUPTI
  // documentation about CUpti_ActivityAttribute).
  InitCupti();
119
  /*Init all available devices by default */
120
  std::vector<int> devices;
121
#ifdef PADDLE_WITH_CUDA
D
dzhwinter 已提交
122
  try {
123 124
    // use user specified GPUs in single-node multi-process mode.
    devices = platform::GetSelectedDevices();
D
dzhwinter 已提交
125 126
  } catch (const std::exception &exp) {
    LOG(WARNING) << "Compiled with WITH_GPU, but no GPU found in runtime.";
127
  }
D
dzhwinter 已提交
128
#endif
129
  InitDevices(init_p2p, devices);
D
dzhwinter 已提交
130 131
}

132 133 134 135
void InitDevices(bool init_p2p, const std::vector<int> devices) {
  std::vector<platform::Place> places;

  for (size_t i = 0; i < devices.size(); ++i) {
136 137 138
    // In multi process multi gpu mode, we may have gpuid = 7
    // but count = 1.
    if (devices[i] < 0) {
139 140 141
      LOG(WARNING) << "Invalid devices id.";
      continue;
    }
142

143 144 145 146 147 148 149
    places.emplace_back(platform::CUDAPlace(devices[i]));
  }
  if (init_p2p) {
    InitP2P(devices);
  }
  places.emplace_back(platform::CPUPlace());
  platform::DeviceContextPool::Init(places);
Q
qingqing01 已提交
150

151
#ifndef PADDLE_WITH_MKLDNN
T
tensor-tang 已提交
152
  platform::SetNumThreads(FLAGS_paddle_num_threads);
153
#endif
T
tensor-tang 已提交
154

T
tensor-tang 已提交
155
#if !defined(_WIN32) && !defined(__APPLE__) && !defined(__OSX__)
T
tensor-tang 已提交
156
  if (platform::MayIUse(platform::avx)) {
T
tensor-tang 已提交
157 158 159 160
#ifndef __AVX__
    LOG(WARNING) << "AVX is available, Please re-compile on local machine";
#endif
  }
161 162 163 164 165 166 167 168 169 170

// Throw some informations when CPU instructions mismatch.
#define AVX_GUIDE(compiletime, runtime)                                     \
  LOG(FATAL)                                                                \
      << "This version is compiled on higher instruction(" #compiletime     \
         ") system, you may encounter illegal instruction error running on" \
         " your local CPU machine. Please reinstall the " #runtime          \
         " version or compile from source code."

#ifdef __AVX512F__
T
tensor-tang 已提交
171 172
  if (!platform::MayIUse(platform::avx512f)) {
    if (platform::MayIUse(platform::avx2)) {
173
      AVX_GUIDE(AVX512, AVX2);
T
tensor-tang 已提交
174
    } else if (platform::MayIUse(platform::avx)) {
175 176 177 178 179
      AVX_GUIDE(AVX512, AVX);
    } else {
      AVX_GUIDE(AVX512, NonAVX);
    }
  }
T
tensor-tang 已提交
180
#endif
181 182

#ifdef __AVX2__
T
tensor-tang 已提交
183 184
  if (!platform::MayIUse(platform::avx2)) {
    if (platform::MayIUse(platform::avx)) {
185 186 187 188
      AVX_GUIDE(AVX2, AVX);
    } else {
      AVX_GUIDE(AVX2, NonAVX);
    }
T
tensor-tang 已提交
189 190
  }
#endif
191 192

#ifdef __AVX__
T
tensor-tang 已提交
193
  if (!platform::MayIUse(platform::avx)) {
194
    AVX_GUIDE(AVX, NonAVX);
T
tensor-tang 已提交
195
  }
196 197
#endif
#undef AVX_GUIDE
T
tensor-tang 已提交
198 199

#endif
200 201
}

C
chengduo 已提交
202
#ifndef _WIN32
203
void SignalHandle(const char *data, int size) {
C
chengduo 已提交
204 205
  auto file_path = string::Sprintf("/tmp/paddle.%d.dump_info", ::getpid());
  try {
206 207 208 209 210 211 212 213 214
    // The signal is coming line by line but we print general guide just once
    std::call_once(glog_warning_once_flag, [&]() {
      LOG(WARNING) << "Initialize GLOG failed, PaddlePaddle may not be able to "
                      "print GLOG\n";
      LOG(WARNING) << "You could check whether you killed GLOG initialize "
                      "process or PaddlePaddle process accidentally\n";
      LOG(WARNING) << "The detail failure signal is:\n\n";
    });

215
    LOG(WARNING) << std::string(data, size);
C
chengduo 已提交
216 217 218 219 220 221 222 223 224
    std::ofstream dump_info;
    dump_info.open(file_path, std::ios::app);
    dump_info << std::string(data, size);
    dump_info.close();
  } catch (...) {
  }
}
#endif

Y
Yang Yu 已提交
225
void InitGLOG(const std::string &prog_name) {
Y
Yang Yu 已提交
226 227 228
  // glog will not hold the ARGV[0] inside.
  // Use strdup to alloc a new string.
  google::InitGoogleLogging(strdup(prog_name.c_str()));
C
chengduo 已提交
229 230 231 232
#ifndef _WIN32
  google::InstallFailureSignalHandler();
  google::InstallFailureWriter(&SignalHandle);
#endif
Y
Yang Yu 已提交
233 234
}

D
dzhwinter 已提交
235 236
}  // namespace framework
}  // namespace paddle