kron_op.cc 5.7 KB
Newer Older
F
Feiyu Chan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>
#include <unordered_map>
#include <vector>

20
#include "paddle/fluid/framework/infershape_utils.h"
21
#include "paddle/fluid/framework/op_registry.h"
22
#include "paddle/phi/infermeta/binary.h"
F
Feiyu Chan 已提交
23 24 25 26 27 28 29 30 31

namespace paddle {
namespace operators {

class KronOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
32
  phi::KernelKey GetExpectedKernelType(
F
Feiyu Chan 已提交
33
      const framework::ExecutionContext& ctx) const override {
34 35
    auto data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
36
    return phi::KernelKey(data_type, ctx.GetPlace());
37 38
  }

39
  phi::KernelKey GetKernelTypeForVar(
40
      const std::string& var_name,
41
      const phi::DenseTensor& tensor,
42 43
      const phi::KernelKey& expected_kernel_type) const override {
    if (framework::IsComplexType(expected_kernel_type.dtype())) {
44
      // only promote inputs’s types when contains complex input
45
      return phi::KernelKey(tensor.place(), tensor.layout(), tensor.dtype());
46
    } else {
47 48
      return phi::KernelKey(
          tensor.place(), tensor.layout(), expected_kernel_type.dtype());
49
    }
F
Feiyu Chan 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62
  }
};

class KronOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor), the first operand of kron op");
    AddInput("Y", "(Tensor), the second operand of kron op");
    AddOutput("Out", "(Tensor), the output of kron op.");
    AddComment(R"DOC(
          Kron Operator.

          This operator computes the Kronecker product of two tensors, a
63
          composite tensor made of blocks of the second tensor scaled by the
F
Feiyu Chan 已提交
64 65 66
          first.

          This operator assumes that the rank of the two tensors, $X$ and $Y$
67 68 69 70
          are the same, if necessary prepending the smallest with ones. If the
          shape of $X$ is [$r_0$, $r_1$, ..., $r_N$] and the shape of $Y$ is
          [$s_0$, $s_1$, ..., $s_N$], then the shape of the output tensor is
          [$r_{0}s_{0}$, $r_{1}s_{1}$, ..., $r_{N}s_{N}$]. The elements are
F
Feiyu Chan 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
          products of elements from $X$ and $Y$.

          The equation is:
          $$
          output[k_{0}, k_{1}, ..., k_{N}] = X[i_{0}, i_{1}, ..., i_{N}] *
          Y[j_{0}, j_{1}, ..., j_{N}]
          $$

          where
          $$
          k_{t} = i_{t} * s_{t} + j_{t}, t = 0, 1, ..., N
          $$
        )DOC");
  }
};

class KronGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "kron_grad");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "kron_grad");
94 95 96 97
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   framework::GradVarName("Out"),
                   "kron_grad");
F
Feiyu Chan 已提交
98 99 100

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
101 102 103 104 105 106
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, ctx->GetInputDim("Y"));
    }
F
Feiyu Chan 已提交
107 108 109
  }

 protected:
110
  phi::KernelKey GetExpectedKernelType(
F
Feiyu Chan 已提交
111 112
      const framework::ExecutionContext& ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
113
    return phi::KernelKey(
F
Feiyu Chan 已提交
114 115 116
        OperatorWithKernel::IndicateVarDataType(ctx, out_grad_name),
        ctx.GetPlace());
  }
C
chentianyu03 已提交
117

118
  phi::KernelKey GetKernelTypeForVar(
119
      const std::string& var_name,
120
      const phi::DenseTensor& tensor,
121 122
      const phi::KernelKey& expected_kernel_type) const override {
    if (framework::IsComplexType(expected_kernel_type.dtype())) {
C
chentianyu03 已提交
123
      // only promote inputs’s types when contains complex input
124
      return phi::KernelKey(tensor.place(), tensor.layout(), tensor.dtype());
C
chentianyu03 已提交
125
    } else {
126 127
      return phi::KernelKey(
          tensor.place(), tensor.layout(), expected_kernel_type.dtype());
C
chentianyu03 已提交
128 129
    }
  }
F
Feiyu Chan 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
};

template <typename T>
class KronGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("kron_grad");

    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput("Y", this->Input("Y"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));

    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));

    grad_op->SetAttrMap(this->Attrs());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

157 158
DECLARE_INFER_SHAPE_FUNCTOR(kron,
                            KronInferShapeFunctor,
159
                            PD_INFER_META(phi::KronInferMeta));
160 161 162
REGISTER_OPERATOR(kron,
                  ops::KronOp,
                  ops::KronOpMaker,
F
Feiyu Chan 已提交
163
                  ops::KronGradOpMaker<paddle::framework::OpDesc>,
164 165
                  ops::KronGradOpMaker<paddle::imperative::OpBase>,
                  KronInferShapeFunctor);
F
Feiyu Chan 已提交
166
REGISTER_OPERATOR(kron_grad, ops::KronGradOp);