ps_util.py 14.4 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Parameter Server utils"""

16 17
import os
import paddle
18
import warnings
T
tangwei12 已提交
19

20 21
__all__ = []

T
tangwei12 已提交
22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
class DistributedInfer:
    """
    Utility class for distributed infer of PaddlePaddle.
    """

    def __init__(self, main_program=None, startup_program=None):
        if main_program:
            self.origin_main_program = main_program.clone()
        else:
            self.origin_main_program = paddle.static.default_main_program(
            ).clone()

        if startup_program:
            self.origin_startup_program = startup_program
        else:
            self.origin_startup_program = paddle.static.default_startup_program(
            )
        self.sparse_table_maps = None

    def init_distributed_infer_env(self,
                                   exe,
                                   loss,
                                   role_maker=None,
                                   dirname=None):
        import paddle.distributed.fleet as fleet

        if fleet.fleet._runtime_handle is None:
            fleet.init(role_maker=role_maker)

            fake_optimizer = paddle.optimizer.SGD()
            strategy = fleet.DistributedStrategy()
            strategy.a_sync = True
55 56 57 58
            optimizer = fleet.distributed_optimizer(fake_optimizer,
                                                    strategy=strategy)
            optimizer.minimize(loss,
                               startup_program=self.origin_startup_program)
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

            if fleet.is_server():
                fleet.init_server(dirname=dirname)
                fleet.run_server()
            else:
                exe.run(paddle.static.default_startup_program())
                fleet.init_worker()
                self._init_dense_params(exe, dirname)
            global_startup_program = paddle.static.default_startup_program()
            global_startup_program = self.origin_startup_program
            global_main_program = paddle.static.default_main_program()
            global_main_program = self.origin_main_program

    def _get_sparse_table_map(self):
        import paddle.distributed.fleet as fleet

        if self.sparse_table_maps is None:
            self.sparse_table_maps = {}
77
            send_ctx = fleet.fleet._runtime_handle._send_ctx
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
            for gradname, ctx in send_ctx.items():
                if ctx.is_sparse:
                    param = gradname.strip("@GRAD")
                    self.sparse_table_maps[param] = ctx.table_id()
                else:
                    continue
        return self.sparse_table_maps

    def _init_dense_params(self, exe=None, dirname=None):
        sparse_table_maps = self._get_sparse_table_map()

        if dirname is not None and exe is not None:
            all_persist_vars = [
                v for v in self.origin_main_program.list_vars()
                if paddle.static.io.is_persistable(v)
            ]
            dense_persist_vars = [(v.name, v) for v in all_persist_vars
                                  if v.name not in sparse_table_maps]
            need_load_vars = [
                v[1] for v in dense_persist_vars
                if os.path.isfile(os.path.join(dirname, v[0]))
            ]
100 101 102 103
            paddle.static.load_vars(exe,
                                    dirname,
                                    main_program=self.origin_main_program,
                                    vars=need_load_vars)
104 105 106 107 108 109 110 111

    def get_dist_infer_program(self):
        varname2tables = self._get_sparse_table_map()
        convert_program = self._convert_program(self.origin_main_program,
                                                varname2tables)
        return convert_program

    def _convert_program(self, main_program, varname2tables):
112

T
tangwei12 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        def distributed_ops_pass(program):
            SPARSE_OP_TYPE_DICT = {"lookup_table": "W", "lookup_table_v2": "W"}

            def _get_pull_sparse_ops(_program):
                pull_sparse_ops = {}
                for op in _program.global_block().ops:
                    if op.type in SPARSE_OP_TYPE_DICT.keys() \
                            and op.attr('remote_prefetch') is True:
                        param_name = op.input(SPARSE_OP_TYPE_DICT[op.type])[0]
                        ops = pull_sparse_ops.get(param_name, [])
                        ops.append(op)
                        pull_sparse_ops[param_name] = ops
                return pull_sparse_ops

            def _pull_sparse_fuse(_program, pull_sparse_ops):
128

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
                def dag_check_up_and_reorder(program, inputs, outputs):
                    global_block = program.global_block()
                    min_output_index = len(global_block.ops)
                    max_input_index = -1
                    input_indexes = [0] * len(global_block.ops)
                    output_indexes = [0] * len(global_block.ops)
                    for idx, op in enumerate(global_block.ops):
                        for i in range(0, len(op.output_names)):
                            if input_indexes[idx] == 1:
                                break
                            outs = op.output(op.output_names[i])
                            for in_id, in_var in enumerate(inputs):
                                if in_var.name in outs:
                                    input_indexes[idx] = 1
                                    max_input_index = max(max_input_index, idx)
                                    break

                        for i in range(0, len(op.input_names)):
                            if output_indexes[idx] == 1:
                                break
                            ins = op.input(op.input_names[i])
                            for out_id, out_var in enumerate(outputs):
                                if out_var.name in ins:
                                    output_indexes[idx] = 1
153 154
                                    min_output_index = min(
                                        min_output_index, idx)
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

                    for i in range(len(global_block.ops)):
                        if input_indexes[i] == 1 and output_indexes[i] == 1:
                            warnings.warn(
                                "unable to re-arrange dags order to combine distributed embedding ops because a op both needs embedding table's output as input and produces ids as the same embedding table's input"
                            )
                            return

                    if min_output_index < max_input_index:
                        move_ops = []
                        for i in range(min_output_index + 1,
                                       len(input_indexes)):
                            if input_indexes[i] == 1:
                                move_ops.append((global_block.ops[i], i))
                        for i, op in enumerate(move_ops):
                            queue = list()
                            visited = set()
                            queue.append(op[1])
                            visited.add(op[0])
                            start = 0
                            while start < len(queue):
                                pos = queue[start]
                                op = global_block.ops[pos]
                                op_inputs = []
                                for k in range(0, len(op.input_names)):
                                    ins = op.input(op.input_names[k])
                                    op_inputs.append(ins)
                                for j in range(pos - 1, min_output_index - 1,
                                               -1):
                                    op1 = global_block.ops[j]
                                    if op1 in visited:
                                        continue
                                    found = False
                                    for k in range(0, len(op1.output_names)):
                                        outs = op1.output(op1.output_names[k])
                                        for t in range(len(op_inputs)):
                                            for y in op_inputs[t]:
                                                if y in outs:
                                                    found = True
                                                    break
                                            if found:
                                                break
                                        if found:
                                            break
                                    if found:
                                        if output_indexes[j] == True:
                                            warnings.warn(
                                                "unable to re-arrange dags order to combine distributed embedding ops"
                                            )
                                            return
                                        queue.append(j)
                                        visited.add(global_block.ops[j])
                                start = start + 1

                            queue.sort()
                            for index in queue:
                                desc = global_block.desc._insert_op(
                                    min_output_index)
                                desc.copy_from(global_block.ops[index].desc)
214 215
                                global_block.desc._remove_op(
                                    index + 1, index + 2)
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
                                global_block.ops[index].desc = desc
                                insert_op = global_block.ops.pop(index)
                                input_state = input_indexes.pop(index)
                                output_state = output_indexes.pop(index)
                                global_block.ops.insert(min_output_index,
                                                        insert_op)
                                input_indexes.insert(min_output_index,
                                                     input_state)
                                output_indexes.insert(min_output_index,
                                                      output_state)
                                min_output_index = min_output_index + 1

                        assert global_block.desc.op_size() == len(
                            global_block.ops)
                        for i in range(len(global_block.ops)):
231 232
                            assert global_block.desc.op(
                                i) == global_block.ops[i].desc
233

T
tangwei12 已提交
234 235 236 237 238 239 240 241 242 243 244 245
                for param, ops in pull_sparse_ops.items():
                    all_ops = program.global_block().ops

                    inputs = [
                        program.global_block().vars[op.input("Ids")[0]]
                        for op in ops
                    ]

                    w = program.global_block().vars[ops[0].input("W")[0]]

                    if w.name not in varname2tables.keys():
                        raise ValueError(
246 247
                            "can not find variable {}, please check your configuration"
                            .format(w.name))
T
tangwei12 已提交
248 249 250 251 252 253 254 255 256 257 258 259

                    table_id = varname2tables[w.name]

                    padding_idx = ops[0].attr("padding_idx")
                    is_distributed = ops[0].attr("is_distributed")
                    op_type = ops[0].type

                    outputs = [
                        program.global_block().vars[op.output("Out")[0]]
                        for op in ops
                    ]

260 261 262
                    dag_check_up_and_reorder(program, inputs, outputs)
                    op_idxs = [all_ops.index(op) for op in ops]

T
tangwei12 已提交
263 264 265 266
                    for idx in op_idxs[::-1]:
                        program.global_block()._remove_op(idx)

                    inputs_idxs = [-1] * len(inputs)
267 268
                    outputs_idxs = [len(program.global_block().ops) + 1
                                    ] * len(outputs)
T
tangwei12 已提交
269 270 271 272 273 274

                    for idx, op in enumerate(program.global_block().ops):
                        for i in range(0, len(op.output_names)):
                            outs = op.output(op.output_names[i])
                            for in_id, in_var in enumerate(inputs):
                                if in_var.name in outs:
275 276
                                    inputs_idxs[in_id] = max(
                                        idx, inputs_idxs[in_id])
T
tangwei12 已提交
277 278 279 280
                        for i in range(0, len(op.input_names)):
                            ins = op.input(op.input_names[i])
                            for out_id, out_var in enumerate(outputs):
                                if out_var.name in ins:
281 282
                                    outputs_idxs[out_id] = min(
                                        idx, outputs_idxs[out_id])
T
tangwei12 已提交
283 284 285 286 287 288 289

                    if min(outputs_idxs) - max(inputs_idxs) >= 1:
                        distributed_idx = max(inputs_idxs) + 1

                        program.global_block()._insert_op(
                            index=distributed_idx,
                            type="distributed_lookup_table",
290 291 292 293
                            inputs={
                                "Ids": inputs,
                                'W': w
                            },
T
tangwei12 已提交
294 295 296 297 298
                            outputs={"Outputs": outputs},
                            attrs={
                                "is_distributed": is_distributed,
                                "padding_idx": padding_idx,
                                "table_id": table_id,
299
                                "is_test": True,
T
tangwei12 已提交
300 301 302 303 304 305 306 307
                                "lookup_table_version": op_type
                            })
                    else:
                        raise ValueError(
                            "something wrong with Fleet, submit a issue is recommended"
                        )

            pull_sparse_ops = _get_pull_sparse_ops(program)
308 309 310
            warnings.warn(
                "lookup_table will be forced to test mode when use DistributedInfer"
            )
T
tangwei12 已提交
311 312 313 314 315
            _pull_sparse_fuse(program, pull_sparse_ops)
            return program

        covert_program = distributed_ops_pass(main_program)
        return covert_program