ps_util.py 14.4 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Parameter Server utils"""

import numpy as np
17 18
import os
import paddle
19
import warnings
T
tangwei12 已提交
20

21 22
__all__ = []

T
tangwei12 已提交
23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
class DistributedInfer:
    """
    Utility class for distributed infer of PaddlePaddle.
    """

    def __init__(self, main_program=None, startup_program=None):
        if main_program:
            self.origin_main_program = main_program.clone()
        else:
            self.origin_main_program = paddle.static.default_main_program(
            ).clone()

        if startup_program:
            self.origin_startup_program = startup_program
        else:
            self.origin_startup_program = paddle.static.default_startup_program(
            )
        self.sparse_table_maps = None

    def init_distributed_infer_env(self,
                                   exe,
                                   loss,
                                   role_maker=None,
                                   dirname=None):
        import paddle.distributed.fleet as fleet

        if fleet.fleet._runtime_handle is None:
            fleet.init(role_maker=role_maker)

            fake_optimizer = paddle.optimizer.SGD()
            strategy = fleet.DistributedStrategy()
            strategy.a_sync = True
            optimizer = fleet.distributed_optimizer(
                fake_optimizer, strategy=strategy)
            optimizer.minimize(
                loss, startup_program=self.origin_startup_program)

            if fleet.is_server():
                fleet.init_server(dirname=dirname)
                fleet.run_server()
            else:
                exe.run(paddle.static.default_startup_program())
                fleet.init_worker()
                self._init_dense_params(exe, dirname)
            global_startup_program = paddle.static.default_startup_program()
            global_startup_program = self.origin_startup_program
            global_main_program = paddle.static.default_main_program()
            global_main_program = self.origin_main_program

    def _get_sparse_table_map(self):
        import paddle.distributed.fleet as fleet

        if self.sparse_table_maps is None:
            self.sparse_table_maps = {}
            send_ctx = fleet.fleet._runtime_handle._communicator.send_ctx_
            for gradname, ctx in send_ctx.items():
                if ctx.is_sparse:
                    param = gradname.strip("@GRAD")
                    self.sparse_table_maps[param] = ctx.table_id()
                else:
                    continue
        return self.sparse_table_maps

    def _init_dense_params(self, exe=None, dirname=None):
        import paddle.distributed.fleet as fleet

        sparse_table_maps = self._get_sparse_table_map()

        if dirname is not None and exe is not None:
            all_persist_vars = [
                v for v in self.origin_main_program.list_vars()
                if paddle.static.io.is_persistable(v)
            ]
            dense_persist_vars = [(v.name, v) for v in all_persist_vars
                                  if v.name not in sparse_table_maps]
            need_load_vars = [
                v[1] for v in dense_persist_vars
                if os.path.isfile(os.path.join(dirname, v[0]))
            ]
            paddle.static.load_vars(
                exe,
                dirname,
                main_program=self.origin_main_program,
                vars=need_load_vars)

    def get_dist_infer_program(self):
        varname2tables = self._get_sparse_table_map()
        convert_program = self._convert_program(self.origin_main_program,
                                                varname2tables)
        return convert_program

    def _convert_program(self, main_program, varname2tables):
T
tangwei12 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        def distributed_ops_pass(program):
            SPARSE_OP_TYPE_DICT = {"lookup_table": "W", "lookup_table_v2": "W"}

            def _get_pull_sparse_ops(_program):
                pull_sparse_ops = {}
                for op in _program.global_block().ops:
                    if op.type in SPARSE_OP_TYPE_DICT.keys() \
                            and op.attr('remote_prefetch') is True:
                        param_name = op.input(SPARSE_OP_TYPE_DICT[op.type])[0]
                        ops = pull_sparse_ops.get(param_name, [])
                        ops.append(op)
                        pull_sparse_ops[param_name] = ops
                return pull_sparse_ops

            def _pull_sparse_fuse(_program, pull_sparse_ops):
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
                def dag_check_up_and_reorder(program, inputs, outputs):
                    global_block = program.global_block()
                    min_output_index = len(global_block.ops)
                    max_input_index = -1
                    input_indexes = [0] * len(global_block.ops)
                    output_indexes = [0] * len(global_block.ops)
                    for idx, op in enumerate(global_block.ops):
                        for i in range(0, len(op.output_names)):
                            if input_indexes[idx] == 1:
                                break
                            outs = op.output(op.output_names[i])
                            for in_id, in_var in enumerate(inputs):
                                if in_var.name in outs:
                                    input_indexes[idx] = 1
                                    max_input_index = max(max_input_index, idx)
                                    break

                        for i in range(0, len(op.input_names)):
                            if output_indexes[idx] == 1:
                                break
                            ins = op.input(op.input_names[i])
                            for out_id, out_var in enumerate(outputs):
                                if out_var.name in ins:
                                    output_indexes[idx] = 1
                                    min_output_index = min(min_output_index,
                                                           idx)

                    for i in range(len(global_block.ops)):
                        if input_indexes[i] == 1 and output_indexes[i] == 1:
                            warnings.warn(
                                "unable to re-arrange dags order to combine distributed embedding ops because a op both needs embedding table's output as input and produces ids as the same embedding table's input"
                            )
                            return

                    if min_output_index < max_input_index:
                        move_ops = []
                        for i in range(min_output_index + 1,
                                       len(input_indexes)):
                            if input_indexes[i] == 1:
                                move_ops.append((global_block.ops[i], i))
                        for i, op in enumerate(move_ops):
                            queue = list()
                            visited = set()
                            queue.append(op[1])
                            visited.add(op[0])
                            start = 0
                            while start < len(queue):
                                pos = queue[start]
                                op = global_block.ops[pos]
                                op_inputs = []
                                for k in range(0, len(op.input_names)):
                                    ins = op.input(op.input_names[k])
                                    op_inputs.append(ins)
                                for j in range(pos - 1, min_output_index - 1,
                                               -1):
                                    op1 = global_block.ops[j]
                                    if op1 in visited:
                                        continue
                                    found = False
                                    for k in range(0, len(op1.output_names)):
                                        outs = op1.output(op1.output_names[k])
                                        for t in range(len(op_inputs)):
                                            for y in op_inputs[t]:
                                                if y in outs:
                                                    found = True
                                                    break
                                            if found:
                                                break
                                        if found:
                                            break
                                    if found:
                                        if output_indexes[j] == True:
                                            warnings.warn(
                                                "unable to re-arrange dags order to combine distributed embedding ops"
                                            )
                                            return
                                        queue.append(j)
                                        visited.add(global_block.ops[j])
                                start = start + 1

                            queue.sort()
                            for index in queue:
                                desc = global_block.desc._insert_op(
                                    min_output_index)
                                desc.copy_from(global_block.ops[index].desc)
                                global_block.desc._remove_op(index + 1,
                                                             index + 2)
                                global_block.ops[index].desc = desc
                                insert_op = global_block.ops.pop(index)
                                input_state = input_indexes.pop(index)
                                output_state = output_indexes.pop(index)
                                global_block.ops.insert(min_output_index,
                                                        insert_op)
                                input_indexes.insert(min_output_index,
                                                     input_state)
                                output_indexes.insert(min_output_index,
                                                      output_state)
                                min_output_index = min_output_index + 1

                        assert global_block.desc.op_size() == len(
                            global_block.ops)
                        for i in range(len(global_block.ops)):
                            assert global_block.desc.op(i) == global_block.ops[
                                i].desc

T
tangwei12 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
                for param, ops in pull_sparse_ops.items():
                    all_ops = program.global_block().ops

                    inputs = [
                        program.global_block().vars[op.input("Ids")[0]]
                        for op in ops
                    ]

                    w = program.global_block().vars[ops[0].input("W")[0]]

                    if w.name not in varname2tables.keys():
                        raise ValueError(
                            "can not find variable {}, please check your configuration".
                            format(w.name))

                    table_id = varname2tables[w.name]

                    padding_idx = ops[0].attr("padding_idx")
                    is_distributed = ops[0].attr("is_distributed")
                    op_type = ops[0].type

                    outputs = [
                        program.global_block().vars[op.output("Out")[0]]
                        for op in ops
                    ]

262 263 264
                    dag_check_up_and_reorder(program, inputs, outputs)
                    op_idxs = [all_ops.index(op) for op in ops]

T
tangwei12 已提交
265 266 267 268
                    for idx in op_idxs[::-1]:
                        program.global_block()._remove_op(idx)

                    inputs_idxs = [-1] * len(inputs)
269 270
                    outputs_idxs = [len(program.global_block().ops) + 1] * len(
                        outputs)
T
tangwei12 已提交
271 272 273 274 275 276

                    for idx, op in enumerate(program.global_block().ops):
                        for i in range(0, len(op.output_names)):
                            outs = op.output(op.output_names[i])
                            for in_id, in_var in enumerate(inputs):
                                if in_var.name in outs:
277 278
                                    inputs_idxs[in_id] = max(idx,
                                                             inputs_idxs[in_id])
T
tangwei12 已提交
279 280 281 282
                        for i in range(0, len(op.input_names)):
                            ins = op.input(op.input_names[i])
                            for out_id, out_var in enumerate(outputs):
                                if out_var.name in ins:
283 284
                                    outputs_idxs[out_id] = min(
                                        idx, outputs_idxs[out_id])
T
tangwei12 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298

                    if min(outputs_idxs) - max(inputs_idxs) >= 1:
                        distributed_idx = max(inputs_idxs) + 1

                        program.global_block()._insert_op(
                            index=distributed_idx,
                            type="distributed_lookup_table",
                            inputs={"Ids": inputs,
                                    'W': w},
                            outputs={"Outputs": outputs},
                            attrs={
                                "is_distributed": is_distributed,
                                "padding_idx": padding_idx,
                                "table_id": table_id,
299
                                "is_test": True,
T
tangwei12 已提交
300 301 302 303 304 305 306 307
                                "lookup_table_version": op_type
                            })
                    else:
                        raise ValueError(
                            "something wrong with Fleet, submit a issue is recommended"
                        )

            pull_sparse_ops = _get_pull_sparse_ops(program)
308 309 310
            warnings.warn(
                "lookup_table will be forced to test mode when use DistributedInfer"
            )
T
tangwei12 已提交
311 312 313 314 315
            _pull_sparse_fuse(program, pull_sparse_ops)
            return program

        covert_program = distributed_ops_pass(main_program)
        return covert_program