op_meta_info.cc 13.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/ext/op_meta_info.h"
16 17 18 19 20

#include <string>
#include <unordered_map>
#include <vector>

Z
zyfncg 已提交
21
#include "glog/logging.h"
22 23
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/enforce.h"
24 25 26

namespace paddle {

27
PADDLE_API void AssignTensorImpl(const Tensor& src, Tensor* dst) {
28 29 30 31 32
  if (!src.initialized() || !dst->defined()) {
    VLOG(3) << "Custom operator assigns non-initialized tensor, this only "
               "happens when handling inplace optional inputs & outputs.";
    return;
  }
33 34
  PADDLE_ENFORCE_EQ(src.is_dense_tensor() && dst->is_dense_tensor(),
                    true,
35
                    phi::errors::Unavailable(
36 37 38 39
                        "Now only supported DenseTensor in Custom Operator."));
  PADDLE_ENFORCE_EQ(
      src.initialized(),
      true,
40
      phi::errors::Unavailable(
41 42 43
          "The Custom OpKernel calculate output is not initialized."));
  PADDLE_ENFORCE_EQ(dst->defined(),
                    true,
44
                    phi::errors::Unavailable(
45
                        "The Custom OpKernel origin output is not defined."));
46 47
  auto& dense_src = static_cast<const phi::DenseTensor&>(*src.impl());
  auto* dense_dst = static_cast<phi::DenseTensor*>(dst->impl().get());
48 49 50 51 52 53 54 55 56 57 58
  *dense_dst = dense_src;
}

////////////////////// Kernel Context //////////////////////

void CustomOpKernelContext::EmplaceBackInput(Tensor&& input) {
  size_t index = inputs_.size();
  inputs_.emplace_back(input);
  input_range_.emplace_back(std::make_pair(index, index + 1));
}

59 60
void CustomOpKernelContext::EmplaceBackInputs(
    const std::vector<Tensor>& inputs) {
61 62 63 64 65 66 67 68 69 70 71 72 73
  size_t index = inputs_.size();
  input_range_.emplace_back(std::make_pair(index, index + inputs.size()));
  inputs_.insert(inputs_.end(),
                 std::make_move_iterator(inputs.begin()),
                 std::make_move_iterator(inputs.end()));
}

void CustomOpKernelContext::EmplaceBackOutput(Tensor&& output) {
  size_t index = outputs_.size();
  outputs_.emplace_back(output);
  output_range_.emplace_back(std::make_pair(index, index + 1));
}

74 75
void CustomOpKernelContext::EmplaceBackOutputs(
    const std::vector<Tensor>& outputs) {
76 77 78 79 80 81 82 83 84
  size_t index = outputs_.size();
  output_range_.emplace_back(std::make_pair(index, index + outputs.size()));
  outputs_.insert(outputs_.end(),
                  std::make_move_iterator(outputs.begin()),
                  std::make_move_iterator(outputs.end()));
}

void CustomOpKernelContext::EmplaceBackAttr(paddle::any attr) {
  attrs_.emplace_back(std::move(attr));
85 86
  VLOG(7) << "attrs_ No." << attrs_.size() - 1
          << " has value of type: " << attrs_[attrs_.size() - 1].type().name();
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
}

const Tensor& CustomOpKernelContext::InputAt(size_t idx) const {
  return inputs_.at(idx);
}

std::vector<Tensor> CustomOpKernelContext::InputsBetween(size_t start,
                                                         size_t end) const {
  std::vector<Tensor> rlt;
  for (size_t i = start; i < end; ++i) {
    rlt.emplace_back(inputs_.at(i));
  }
  return rlt;
}

102 103 104 105
Tensor& CustomOpKernelContext::MutableInputAt(size_t idx) {
  return inputs_.at(idx);
}

106 107 108 109 110 111 112
paddle::optional<Tensor> CustomOpKernelContext::OptionalInputAt(size_t idx) {
  if (!inputs_.at(idx).is_initialized()) {
    return paddle::none;
  }
  return paddle::make_optional<paddle::Tensor>(inputs_.at(idx));
}

113 114 115 116 117 118 119 120 121 122 123 124
Tensor* CustomOpKernelContext::MutableOutputAt(size_t idx) {
  return &(outputs_.at(idx));
}
std::vector<Tensor*> CustomOpKernelContext::MutableOutputBetweeen(size_t start,
                                                                  size_t end) {
  std::vector<Tensor*> rlt;
  for (size_t i = start; i < end; ++i) {
    rlt.emplace_back(&(outputs_.at(i)));
  }
  return rlt;
}

125 126 127 128 129 130 131 132 133
std::vector<Tensor> CustomOpKernelContext::OutputsBetweeen(size_t start,
                                                           size_t end) {
  std::vector<Tensor> rlt;
  for (size_t i = start; i < end; ++i) {
    rlt.emplace_back(outputs_.at(i));
  }
  return rlt;
}

134 135 136 137 138 139 140 141 142 143 144 145 146
std::vector<Tensor>* CustomOpKernelContext::AllMutableOutput() {
  return &outputs_;
}

const std::pair<size_t, size_t>& CustomOpKernelContext::InputRangeAt(
    size_t idx) const {
  return input_range_.at(idx);
}
const std::pair<size_t, size_t>& CustomOpKernelContext::OutputRangeAt(
    size_t idx) const {
  return output_range_.at(idx);
}

147 148
// handle inplace mechanism
// Find out non-inplace output tensors.
149
// TODO(HongyuJia): Add cache for inplace_tensor_map_ to optimize performance
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
void CustomOpKernelContext::MapPlainOutputs(
    const std::vector<std::string>& inputs,
    const std::vector<std::string>& outputs,
    const std::unordered_map<std::string, std::string>& inplace_map) {
  for (size_t in_idx = 0; in_idx < inputs.size(); ++in_idx) {
    auto& input = inputs[in_idx];
    if (inplace_map.find(input) == inplace_map.end()) {
      continue;
    }
    auto out_iter = find(outputs.begin(), outputs.end(), inplace_map.at(input));
    PADDLE_ENFORCE(
        out_iter != outputs.end(),
        phi::errors::NotFound("Can't find the mapped value of %s, please check "
                              "the input of `Inplace` again and make "
                              "sure you registered your op accurately. ",
                              input));
    inplace_tensor_map_[in_idx] = distance(outputs.begin(), out_iter);
  }
  for (size_t i = 0; i < outputs.size(); ++i) {
    if (std::any_of(
            inplace_tensor_map_.begin(),
            inplace_tensor_map_.end(),
            [i](std::unordered_map<size_t, size_t>::const_reference pair) {
              return pair.second == i;
            })) {
      continue;
    }
    size_t output_start_idx = output_range_[i].first;
    size_t output_end_idx = output_range_[i].second;
    for (size_t idx = output_start_idx; idx < output_end_idx; ++idx) {
      plain_outputs_.push_back(&outputs_[idx]);
    }
  }
  VLOG(4) << "Custom opertor update inplace input-output map successfully.";
}
// Assign input tensor to inplace output tensors.
void CustomOpKernelContext::AssignInplaceOutputs() {
  for (auto pair : inplace_tensor_map_) {
    size_t in_start_idx = input_range_[pair.first].first;
    size_t in_end_idx = input_range_[pair.first].second;
    size_t out_start_idx = output_range_[pair.second].first;
    size_t out_end_idx = output_range_[pair.second].second;
    size_t assign_tensor_size = in_end_idx - in_start_idx;
    PADDLE_ENFORCE(
        assign_tensor_size == out_end_idx - out_start_idx,
        phi::errors::OutOfRange("When assigning inplaced tensor, Input vector "
                                "size %d mismatch output vector size %d",
                                in_end_idx - in_start_idx,
                                out_end_idx - out_start_idx));
    for (size_t i = 0; i < assign_tensor_size; ++i) {
      AssignTensorImpl(inputs_[in_start_idx + i], &outputs_[out_start_idx + i]);
    }
202 203 204
    VLOG(4) << "Custom opertor update inplace input-output tensor "
               "successfully. Update map size = "
            << inplace_tensor_map_.size();
205 206 207 208 209 210 211 212 213
  }
}
std::vector<Tensor*>* CustomOpKernelContext::AllMutablePlainOutput() {
  return &plain_outputs_;
}
std::unordered_map<size_t, size_t>
CustomOpKernelContext::GetInplaceTensorMap() {
  return inplace_tensor_map_;
}
214 215 216 217 218 219 220 221 222 223
////////////////////// Op Meta Info //////////////////////

OpMetaInfo& OpMetaInfo::Inputs(std::vector<std::string>&& inputs) {
  inputs_ = std::forward<std::vector<std::string>>(inputs);
  return *this;
}
OpMetaInfo& OpMetaInfo::Outputs(std::vector<std::string>&& outputs) {
  outputs_ = std::forward<std::vector<std::string>>(outputs);
  return *this;
}
224 225 226 227
OpMetaInfo& OpMetaInfo::Attrs(std::vector<std::string>&& attrs) {
  attrs_ = std::forward<std::vector<std::string>>(attrs);
  return *this;
}
228
OpMetaInfo& OpMetaInfo::SetInplaceMap(
229 230 231
    std::unordered_map<std::string, std::string>&& inplace_map) {
  inplace_map_ =
      std::forward<std::unordered_map<std::string, std::string>>(inplace_map);
232 233 234
  for (const auto& pair : inplace_map_) {
    inplace_reverse_map_[pair.second] = pair.first;
  }
235 236
  return *this;
}
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
OpMetaInfo& OpMetaInfo::SetKernelFn(KernelFunc&& func) {
  kernel_fn_ = std::forward<KernelFunc>(func);
  return *this;
}
OpMetaInfo& OpMetaInfo::SetInferShapeFn(InferShapeFunc&& func) {
  infer_shape_fn_ = std::forward<InferShapeFunc>(func);
  return *this;
}
OpMetaInfo& OpMetaInfo::SetInferDtypeFn(InferDtypeFunc&& func) {
  infer_dtype_fn_ = std::forward<InferDtypeFunc>(func);
  return *this;
}

//////////////// Op Meta Info Map /////////////////

std::vector<OpMetaInfo>& OpMetaInfoMap::operator[](const std::string& name) {
  return map_[name];
}

const std::unordered_map<std::string, std::vector<OpMetaInfo>>&
OpMetaInfoMap::GetMap() const {
  return map_;
}

//////////////// Op Meta Info Builder /////////////////

263 264
OpMetaInfoBuilder::OpMetaInfoBuilder(std::string&& name, size_t index) {
  // 1. member assign
265
  name_ = std::forward<std::string>(name);
266 267 268
  index_ = index;

  // 2. check and meta info build
269
  auto& info_vector = OpMetaInfoMap::Instance()[name_];
270 271
  // index check
  PADDLE_ENFORCE_EQ(
272 273
      info_vector.size(),
      index_,
274
      phi::errors::PreconditionNotMet(
275 276 277 278 279 280 281 282 283 284 285 286
          "The operator %s's meta info register failed. "
          "Please make sure you call marcos as order `PD_BUILD_OP`, "
          "`PD_BUILD_GRAD_OP`, `PD_BUILD_DOUBLE_GRAD_OP`.",
          name_));
  switch (index_) {
    case 0:
      break;
    case 1:
      name_ = name_ + "_grad";
      break;
    case 2:
      name_ = name_ + "_grad_grad";
287
      break;
288
    default:
289
      PADDLE_THROW(phi::errors::InvalidArgument(
290 291 292 293
          "Not support index `%d` when construct OpMetaInfoBuilder, "
          "now only support `0, 1, 2`.",
          index_));
  }
294 295
  auto op_meta = OpMetaInfo(name_);
  info_vector.emplace_back(std::move(op_meta));
296
  // 3. get current info ptr
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
  info_ptr_ = &(info_vector.back());
}

OpMetaInfoBuilder& OpMetaInfoBuilder::Inputs(
    std::vector<std::string>&& inputs) {
  info_ptr_->Inputs(std::forward<std::vector<std::string>>(inputs));
  return *this;
}

OpMetaInfoBuilder& OpMetaInfoBuilder::Outputs(
    std::vector<std::string>&& outputs) {
  info_ptr_->Outputs(std::forward<std::vector<std::string>>(outputs));
  return *this;
}

312 313
OpMetaInfoBuilder& OpMetaInfoBuilder::Attrs(std::vector<std::string>&& attrs) {
  info_ptr_->Attrs(std::forward<std::vector<std::string>>(attrs));
314 315 316
  return *this;
}

317
OpMetaInfoBuilder& OpMetaInfoBuilder::SetInplaceMap(
318
    std::unordered_map<std::string, std::string>&& inplace_map) {
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
  const std::vector<std::string>& inputs =
      OpMetaInfoHelper::GetInputs(*info_ptr_);
  const std::vector<std::string>& outputs =
      OpMetaInfoHelper::GetOutputs(*info_ptr_);
  for (const auto& pair : inplace_map) {
    PADDLE_ENFORCE(
        std::find(inputs.begin(), inputs.end(), pair.first) != inputs.cend(),
        phi::errors::PreconditionNotMet(
            "The register of operator %s's `SetInplaceMap` failed. "
            "Please make sure: 1. Call `Inputs` and `Outputs` before "
            "`SetInplaceMap`; 2. The keys of inplace_map are inside `Inputs`",
            name_));
    PADDLE_ENFORCE(std::find(outputs.begin(), outputs.end(), pair.second) !=
                       outputs.cend(),
                   phi::errors::PreconditionNotMet(
                       "The register of operator %s's `SetInplaceMap` failed. "
                       "Please make sure: 1. Call `Inputs` and `Outputs` "
                       "before `SetInplaceMap`; 2. The values of inplace_map "
                       "are inside `Outputs`",
                       name_));
  }
340
  info_ptr_->SetInplaceMap(
341
      std::forward<std::unordered_map<std::string, std::string>>(inplace_map));
342 343 344
  return *this;
}

345
OpMetaInfoBuilder& OpMetaInfoBuilder::SetKernelFn(KernelFunc func) {
346 347 348 349
  info_ptr_->SetKernelFn(std::forward<KernelFunc>(func));
  return *this;
}

350
OpMetaInfoBuilder& OpMetaInfoBuilder::SetInferShapeFn(InferShapeFunc func) {
351 352 353 354
  info_ptr_->SetInferShapeFn(std::forward<InferShapeFunc>(func));
  return *this;
}

355
OpMetaInfoBuilder& OpMetaInfoBuilder::SetInferDtypeFn(InferDtypeFunc func) {
356
  PADDLE_ENFORCE_EQ(
357 358
      index_,
      0UL,
359
      phi::errors::Unimplemented(
360 361 362
          "Currently, the InferDtypeFn setting of Grad Op is not supported, "
          "And backward Tensor `X@GRAD` will use the dtype of forward Tensor "
          "`X` by default."));
363 364 365 366 367
  info_ptr_->SetInferDtypeFn(std::forward<InferDtypeFunc>(func));
  return *this;
}
}  // namespace paddle

368
#ifdef __cplusplus
369
extern "C" {
370
#endif
371

372 373
#ifndef _WIN32
// C-API to get global OpMetaInfoMap.
374 375 376
paddle::OpMetaInfoMap& PD_GetOpMetaInfoMap() {
  return paddle::OpMetaInfoMap::Instance();
}
377
#endif
378

379
#ifdef __cplusplus
380
}  // end extern "C"
381
#endif