op_meta_info.cc 11.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/ext/op_meta_info.h"
16 17 18 19 20

#include <string>
#include <unordered_map>
#include <vector>

Z
zyfncg 已提交
21
#include "glog/logging.h"
22 23
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/enforce.h"
24 25 26

namespace paddle {

27 28 29
PADDLE_API void AssignTensorImpl(const Tensor& src, Tensor* dst) {
  PADDLE_ENFORCE_EQ(src.is_dense_tensor() && dst->is_dense_tensor(),
                    true,
30
                    phi::errors::Unavailable(
31 32 33 34
                        "Now only supported DenseTensor in Custom Operator."));
  PADDLE_ENFORCE_EQ(
      src.initialized(),
      true,
35
      phi::errors::Unavailable(
36 37 38
          "The Custom OpKernel calculate output is not initialized."));
  PADDLE_ENFORCE_EQ(dst->defined(),
                    true,
39
                    phi::errors::Unavailable(
40
                        "The Custom OpKernel origin output is not defined."));
41 42
  auto& dense_src = static_cast<const phi::DenseTensor&>(*src.impl());
  auto* dense_dst = static_cast<phi::DenseTensor*>(dst->impl().get());
43 44 45 46 47 48 49 50 51 52 53
  *dense_dst = dense_src;
}

////////////////////// Kernel Context //////////////////////

void CustomOpKernelContext::EmplaceBackInput(Tensor&& input) {
  size_t index = inputs_.size();
  inputs_.emplace_back(input);
  input_range_.emplace_back(std::make_pair(index, index + 1));
}

54 55
void CustomOpKernelContext::EmplaceBackInputs(
    const std::vector<Tensor>& inputs) {
56 57 58 59 60 61 62 63 64 65 66 67 68
  size_t index = inputs_.size();
  input_range_.emplace_back(std::make_pair(index, index + inputs.size()));
  inputs_.insert(inputs_.end(),
                 std::make_move_iterator(inputs.begin()),
                 std::make_move_iterator(inputs.end()));
}

void CustomOpKernelContext::EmplaceBackOutput(Tensor&& output) {
  size_t index = outputs_.size();
  outputs_.emplace_back(output);
  output_range_.emplace_back(std::make_pair(index, index + 1));
}

69 70
void CustomOpKernelContext::EmplaceBackOutputs(
    const std::vector<Tensor>& outputs) {
71 72 73 74 75 76 77 78 79
  size_t index = outputs_.size();
  output_range_.emplace_back(std::make_pair(index, index + outputs.size()));
  outputs_.insert(outputs_.end(),
                  std::make_move_iterator(outputs.begin()),
                  std::make_move_iterator(outputs.end()));
}

void CustomOpKernelContext::EmplaceBackAttr(paddle::any attr) {
  attrs_.emplace_back(std::move(attr));
80 81
  VLOG(7) << "attrs_ No." << attrs_.size() - 1
          << " has value of type: " << attrs_[attrs_.size() - 1].type().name();
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
}

const Tensor& CustomOpKernelContext::InputAt(size_t idx) const {
  return inputs_.at(idx);
}

std::vector<Tensor> CustomOpKernelContext::InputsBetween(size_t start,
                                                         size_t end) const {
  std::vector<Tensor> rlt;
  for (size_t i = start; i < end; ++i) {
    rlt.emplace_back(inputs_.at(i));
  }
  return rlt;
}

97 98 99 100
Tensor& CustomOpKernelContext::MutableInputAt(size_t idx) {
  return inputs_.at(idx);
}

101 102 103 104 105 106 107 108 109 110 111 112
Tensor* CustomOpKernelContext::MutableOutputAt(size_t idx) {
  return &(outputs_.at(idx));
}
std::vector<Tensor*> CustomOpKernelContext::MutableOutputBetweeen(size_t start,
                                                                  size_t end) {
  std::vector<Tensor*> rlt;
  for (size_t i = start; i < end; ++i) {
    rlt.emplace_back(&(outputs_.at(i)));
  }
  return rlt;
}

113 114 115 116 117 118 119 120 121
std::vector<Tensor> CustomOpKernelContext::OutputsBetweeen(size_t start,
                                                           size_t end) {
  std::vector<Tensor> rlt;
  for (size_t i = start; i < end; ++i) {
    rlt.emplace_back(outputs_.at(i));
  }
  return rlt;
}

122 123 124 125 126 127 128 129 130 131 132 133 134
std::vector<Tensor>* CustomOpKernelContext::AllMutableOutput() {
  return &outputs_;
}

const std::pair<size_t, size_t>& CustomOpKernelContext::InputRangeAt(
    size_t idx) const {
  return input_range_.at(idx);
}
const std::pair<size_t, size_t>& CustomOpKernelContext::OutputRangeAt(
    size_t idx) const {
  return output_range_.at(idx);
}

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
// handle inplace mechanism
// Find out non-inplace output tensors.
void CustomOpKernelContext::MapPlainOutputs(
    const std::vector<std::string>& inputs,
    const std::vector<std::string>& outputs,
    const std::unordered_map<std::string, std::string>& inplace_map) {
  for (size_t in_idx = 0; in_idx < inputs.size(); ++in_idx) {
    auto& input = inputs[in_idx];
    if (inplace_map.find(input) == inplace_map.end()) {
      continue;
    }
    auto out_iter = find(outputs.begin(), outputs.end(), inplace_map.at(input));
    PADDLE_ENFORCE(
        out_iter != outputs.end(),
        phi::errors::NotFound("Can't find the mapped value of %s, please check "
                              "the input of `Inplace` again and make "
                              "sure you registered your op accurately. ",
                              input));
    inplace_tensor_map_[in_idx] = distance(outputs.begin(), out_iter);
  }
  for (size_t i = 0; i < outputs.size(); ++i) {
    if (std::any_of(
            inplace_tensor_map_.begin(),
            inplace_tensor_map_.end(),
            [i](std::unordered_map<size_t, size_t>::const_reference pair) {
              return pair.second == i;
            })) {
      continue;
    }
    size_t output_start_idx = output_range_[i].first;
    size_t output_end_idx = output_range_[i].second;
    for (size_t idx = output_start_idx; idx < output_end_idx; ++idx) {
      plain_outputs_.push_back(&outputs_[idx]);
    }
  }
  VLOG(4) << "Custom opertor update inplace input-output map successfully.";
}
// Assign input tensor to inplace output tensors.
void CustomOpKernelContext::AssignInplaceOutputs() {
  for (auto pair : inplace_tensor_map_) {
    size_t in_start_idx = input_range_[pair.first].first;
    size_t in_end_idx = input_range_[pair.first].second;
    size_t out_start_idx = output_range_[pair.second].first;
    size_t out_end_idx = output_range_[pair.second].second;
    size_t assign_tensor_size = in_end_idx - in_start_idx;
    PADDLE_ENFORCE(
        assign_tensor_size == out_end_idx - out_start_idx,
        phi::errors::OutOfRange("When assigning inplaced tensor, Input vector "
                                "size %d mismatch output vector size %d",
                                in_end_idx - in_start_idx,
                                out_end_idx - out_start_idx));
    for (size_t i = 0; i < assign_tensor_size; ++i) {
      AssignTensorImpl(inputs_[in_start_idx + i], &outputs_[out_start_idx + i]);
    }
    VLOG(4)
        << "Custom opertor update inplace input-output tensor successfully.";
  }
}
std::vector<Tensor*>* CustomOpKernelContext::AllMutablePlainOutput() {
  return &plain_outputs_;
}
std::unordered_map<size_t, size_t>
CustomOpKernelContext::GetInplaceTensorMap() {
  return inplace_tensor_map_;
}
200 201 202 203 204 205 206 207 208 209
////////////////////// Op Meta Info //////////////////////

OpMetaInfo& OpMetaInfo::Inputs(std::vector<std::string>&& inputs) {
  inputs_ = std::forward<std::vector<std::string>>(inputs);
  return *this;
}
OpMetaInfo& OpMetaInfo::Outputs(std::vector<std::string>&& outputs) {
  outputs_ = std::forward<std::vector<std::string>>(outputs);
  return *this;
}
210 211 212 213
OpMetaInfo& OpMetaInfo::Attrs(std::vector<std::string>&& attrs) {
  attrs_ = std::forward<std::vector<std::string>>(attrs);
  return *this;
}
214
OpMetaInfo& OpMetaInfo::SetInplaceMap(
215 216 217 218 219
    std::unordered_map<std::string, std::string>&& inplace_map) {
  inplace_map_ =
      std::forward<std::unordered_map<std::string, std::string>>(inplace_map);
  return *this;
}
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
OpMetaInfo& OpMetaInfo::SetKernelFn(KernelFunc&& func) {
  kernel_fn_ = std::forward<KernelFunc>(func);
  return *this;
}
OpMetaInfo& OpMetaInfo::SetInferShapeFn(InferShapeFunc&& func) {
  infer_shape_fn_ = std::forward<InferShapeFunc>(func);
  return *this;
}
OpMetaInfo& OpMetaInfo::SetInferDtypeFn(InferDtypeFunc&& func) {
  infer_dtype_fn_ = std::forward<InferDtypeFunc>(func);
  return *this;
}

//////////////// Op Meta Info Map /////////////////

std::vector<OpMetaInfo>& OpMetaInfoMap::operator[](const std::string& name) {
  return map_[name];
}

const std::unordered_map<std::string, std::vector<OpMetaInfo>>&
OpMetaInfoMap::GetMap() const {
  return map_;
}

//////////////// Op Meta Info Builder /////////////////

246 247
OpMetaInfoBuilder::OpMetaInfoBuilder(std::string&& name, size_t index) {
  // 1. member assign
248
  name_ = std::forward<std::string>(name);
249 250 251
  index_ = index;

  // 2. check and meta info build
252
  auto& info_vector = OpMetaInfoMap::Instance()[name_];
253 254
  // index check
  PADDLE_ENFORCE_EQ(
255 256
      info_vector.size(),
      index_,
257
      phi::errors::PreconditionNotMet(
258 259 260 261 262 263 264 265 266 267 268 269
          "The operator %s's meta info register failed. "
          "Please make sure you call marcos as order `PD_BUILD_OP`, "
          "`PD_BUILD_GRAD_OP`, `PD_BUILD_DOUBLE_GRAD_OP`.",
          name_));
  switch (index_) {
    case 0:
      break;
    case 1:
      name_ = name_ + "_grad";
      break;
    case 2:
      name_ = name_ + "_grad_grad";
270
      break;
271
    default:
272
      PADDLE_THROW(phi::errors::InvalidArgument(
273 274 275 276
          "Not support index `%d` when construct OpMetaInfoBuilder, "
          "now only support `0, 1, 2`.",
          index_));
  }
277 278
  auto op_meta = OpMetaInfo(name_);
  info_vector.emplace_back(std::move(op_meta));
279
  // 3. get current info ptr
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
  info_ptr_ = &(info_vector.back());
}

OpMetaInfoBuilder& OpMetaInfoBuilder::Inputs(
    std::vector<std::string>&& inputs) {
  info_ptr_->Inputs(std::forward<std::vector<std::string>>(inputs));
  return *this;
}

OpMetaInfoBuilder& OpMetaInfoBuilder::Outputs(
    std::vector<std::string>&& outputs) {
  info_ptr_->Outputs(std::forward<std::vector<std::string>>(outputs));
  return *this;
}

295 296
OpMetaInfoBuilder& OpMetaInfoBuilder::Attrs(std::vector<std::string>&& attrs) {
  info_ptr_->Attrs(std::forward<std::vector<std::string>>(attrs));
297 298 299
  return *this;
}

300
OpMetaInfoBuilder& OpMetaInfoBuilder::SetInplaceMap(
301
    std::unordered_map<std::string, std::string>&& inplace_map) {
302
  info_ptr_->SetInplaceMap(
303
      std::forward<std::unordered_map<std::string, std::string>>(inplace_map));
304 305 306
  return *this;
}

307
OpMetaInfoBuilder& OpMetaInfoBuilder::SetKernelFn(KernelFunc func) {
308 309 310 311
  info_ptr_->SetKernelFn(std::forward<KernelFunc>(func));
  return *this;
}

312
OpMetaInfoBuilder& OpMetaInfoBuilder::SetInferShapeFn(InferShapeFunc func) {
313 314 315 316
  info_ptr_->SetInferShapeFn(std::forward<InferShapeFunc>(func));
  return *this;
}

317
OpMetaInfoBuilder& OpMetaInfoBuilder::SetInferDtypeFn(InferDtypeFunc func) {
318
  PADDLE_ENFORCE_EQ(
319 320
      index_,
      0UL,
321
      phi::errors::Unimplemented(
322 323 324
          "Currently, the InferDtypeFn setting of Grad Op is not supported, "
          "And backward Tensor `X@GRAD` will use the dtype of forward Tensor "
          "`X` by default."));
325 326 327 328 329
  info_ptr_->SetInferDtypeFn(std::forward<InferDtypeFunc>(func));
  return *this;
}
}  // namespace paddle

330
#ifdef __cplusplus
331
extern "C" {
332
#endif
333

334 335
#ifndef _WIN32
// C-API to get global OpMetaInfoMap.
336 337 338
paddle::OpMetaInfoMap& PD_GetOpMetaInfoMap() {
  return paddle::OpMetaInfoMap::Instance();
}
339
#endif
340

341
#ifdef __cplusplus
342
}  // end extern "C"
343
#endif