amp_nn.py 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from paddle import _C_ops
16 17 18 19
from paddle.fluid import core
from paddle.fluid.data_feeder import check_type, check_variable_and_dtype
from paddle.fluid.framework import Variable, in_dygraph_mode
from paddle.fluid.layer_helper import LayerHelper
20 21


22
def check_finite_and_unscale(x, scale, name=None, float_status=None):
23 24 25 26 27 28
    """
    Check if input X contains all finite data, if yes, scale it by input Scale.

    $$Out = X / scale$$

    If any tensor in X contains Inf or Nan, the Out will generate a indicator.
29 30
    FoundInfinite will be 1 (True), and Out will not be scaled. In this case, the data of
    Out should not be used, and its data may not be deterministic.
31
    Otherwise, FoundInfinite will be 0 (False).
32

33 34 35
    Args:
        x(list|tuple): The input tensors of check_finite_and_unscale operator.
        scale: The scale of check_finite_and_unscale operator.
36
        float_status(Tensor): (Only used on NPU) The float status to check overflow.
37 38 39
    """

    helper = LayerHelper("check_finite_and_unscale", **locals())
40

41 42
    found_inf = helper.create_variable_for_type_inference(dtype='bool')

43 44 45 46
    if in_dygraph_mode():
        _C_ops.check_finite_and_unscale_(x, scale, found_inf)
        return x, found_inf

47 48 49 50 51 52 53 54 55
    check_type(x, 'x', (tuple, list), 'check_finite_and_unscale')
    for e in x:
        check_variable_and_dtype(
            e,
            "x",
            ['float16', 'float32', 'float64'],
            'check_finite_and_unscale',
        )

56
    inputs = {'X': x, 'Scale': scale}
57
    if core.is_compiled_with_npu():
58 59 60 61 62 63
        check_variable_and_dtype(
            float_status,
            "float_status",
            ['float16', 'float32'],
            'check_finite_and_unscale',
        )
64
        inputs['FloatStatus'] = float_status
65
    outputs = {'Out': x, 'FoundInfinite': found_inf}
66 67 68
    helper.append_op(
        type='check_finite_and_unscale', inputs=inputs, outputs=outputs
    )
69 70 71 72

    return x, found_inf


73 74 75 76 77 78 79 80 81 82 83 84 85
def update_loss_scaling(
    x,
    found_inf,
    prev_loss_scaling,
    num_good_steps,
    num_bad_steps,
    incr_every_n_steps,
    decr_every_n_nan_or_inf,
    incr_ratio,
    decr_ratio,
    stop_update=False,
    name=None,
):
86
    """
87 88
    Update loss scaling according to overall gradients. If all gradients is
    finite after incr_every_n_steps, loss scaling will increase by incr_ratio.
89 90 91 92 93
    Otherwise, loss scaling will decrease by decr_ratio after
    decr_every_n_nan_or_inf steps and each step some gradients are infinite.

    Args:
        x(list|tuple): The input tensors of update_loss_scaling operator.
94
        found_inf (Variable): A boolean variable indicates whether
95 96
                                     there is any infinite gradient.
        prev_loss_scaling (Variable): Previous loss scaling.
97
        num_good_steps (Variable): A variable accumulates good steps in which
98
                                   all gradients are finite.
99
        num_bad_steps (Variable): A variable accumulates bad steps in which
100
                                  some gradients are infinite.
101 102
        incr_every_n_steps (int): A variable represents increasing loss
                                       scaling every n consecutive steps with
103
                                       finite gradients.
104 105
        decr_every_n_nan_or_inf (int): A variable represents decreasing
                                            loss scaling every n accumulated
106
                                            steps with nan or inf gradients.
107
        incr_ratio(float): The multiplier to use when increasing the loss
108
                           scaling.
109
        decr_ratio(float): The less-than-one-multiplier to use when decreasing
110 111
                           loss scaling.
    """
112 113 114 115 116 117 118 119 120 121 122 123 124 125
    if in_dygraph_mode():
        _C_ops.update_loss_scaling_(
            x,
            found_inf,
            prev_loss_scaling,
            num_good_steps,
            num_bad_steps,
            incr_every_n_steps,
            decr_every_n_nan_or_inf,
            incr_ratio,
            decr_ratio,
            stop_update,
        )
        return x
126

127 128 129 130 131 132
    check_variable_and_dtype(
        prev_loss_scaling,
        "prev_loss_scaling",
        ['float32', 'float64'],
        "update_loss_scaling",
    )
133 134
    check_type(x, 'x', (tuple, list), 'update_loss_scaling')
    for e in x:
135 136 137
        check_variable_and_dtype(
            e, "x", ['float16', 'float32', 'float64'], 'update_loss_scaling'
        )
138
        if e.dtype == core.VarDesc.VarType.FP16:
139 140 141
            assert (
                prev_loss_scaling.dtype == core.VarDesc.VarType.FP32
            ), "The dtype of prev_loss_scaling should be float32 when the dtype of x is float16."
142
        else:
143 144 145
            assert (
                prev_loss_scaling.dtype == e.dtype
            ), "The dtype of prev_loss_scaling should be equal to the dtype of x."
146 147 148 149 150 151 152 153

    helper = LayerHelper("update_loss_scaling", **locals())

    inputs = {
        'X': x,
        'FoundInfinite': found_inf,
        'PrevLossScaling': prev_loss_scaling,
        'InGoodSteps': num_good_steps,
154
        'InBadSteps': num_bad_steps,
155 156 157 158 159 160
    }

    outputs = {
        'Out': x,
        'LossScaling': prev_loss_scaling,
        'OutGoodSteps': num_good_steps,
161
        'OutBadSteps': num_bad_steps,
162 163 164 165 166 167 168 169 170
    }

    attrs = {
        'incr_every_n_steps': incr_every_n_steps,
        'decr_every_n_nan_or_inf': decr_every_n_nan_or_inf,
        'incr_ratio': incr_ratio,
        'decr_ratio': decr_ratio,
    }

171 172 173 174 175
    if isinstance(stop_update, Variable):
        inputs['StopUpdate'] = stop_update
    else:
        attrs['stop_update'] = stop_update

176 177 178
    helper.append_op(
        type='update_loss_scaling', inputs=inputs, outputs=outputs, attrs=attrs
    )
179 180

    return x