dynamic_shape_infermeta.cc 15.7 KB
Newer Older
W
weishengying 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tensorrt/dynamic_shape_infermeta_factory.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
17
#include "paddle/phi/core/enforce.h"
W
weishengying 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
#include "paddle/phi/kernels/funcs/unfold_functor.h"

namespace paddle {
namespace inference {
namespace tensorrt {

nvinfer1::DimsExprs GatherNdInferMeta(
    int output_index,
    const nvinfer1::DimsExprs* inputs,
    int nb_inputs,
    nvinfer1::IExprBuilder& expr_builder,  // NOLINT
    const framework::OpDesc& op_desc) {
  const nvinfer1::DimsExprs x_dims = inputs[0];
  const int x_dims_size = inputs[0].nbDims;
  const nvinfer1::DimsExprs index_dims = inputs[1];
  const int index_dims_size = inputs[1].nbDims;

  std::vector<const nvinfer1::IDimensionExpr*> result_dims;
  // The result dims is
  //   Index.shape[:-1] + X.shape[Index.shape[-1]:]
  for (int i = 0; i < index_dims_size - 1; ++i) {
    result_dims.emplace_back(index_dims.d[i]);
  }

  if (index_dims.d[index_dims_size - 1]->isConstant()) {
    for (int i = index_dims.d[index_dims_size - 1]->getConstantValue();
         i < x_dims_size;
         ++i) {
      result_dims.emplace_back(x_dims.d[i]);
    }
  }

  nvinfer1::DimsExprs output;
  output.nbDims = result_dims.size();
  for (int i = 0; i < output.nbDims; i++) {
    output.d[i] = result_dims[i];
  }
  return output;
}
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

nvinfer1::DimsExprs YoloBoxInferMeta(
    int output_index,
    const nvinfer1::DimsExprs* inputs,
    int nb_inputs,
    nvinfer1::IExprBuilder& expr_builder,  // NOLINT
    const framework::OpDesc& op_desc) {
  PADDLE_ENFORCE_EQ(
      nb_inputs,
      2,
      phi::errors::InvalidArgument("inputs of yolo_box should be equal to 2, "
                                   "But received (%s)",
                                   nb_inputs));

  const nvinfer1::DimsExprs dim_x = inputs[0];

  auto anchors = PADDLE_GET_CONST(std::vector<int>, op_desc.GetAttr("anchors"));
  int anchor_num = anchors.size() / 2;

  // box_num = dim_x[2] * dim_x[3] * anchor_num;
  const nvinfer1::IDimensionExpr* box_num = expr_builder.operation(
      nvinfer1::DimensionOperation::kPROD,
      *expr_builder.operation(
          nvinfer1::DimensionOperation::kPROD, *dim_x.d[2], *dim_x.d[3]),
      *expr_builder.constant(anchor_num));

  nvinfer1::DimsExprs output;
  output.nbDims = 3;
  if (output_index == 0) {
    output.d[0] = dim_x.d[0];
    output.d[1] = box_num;
    output.d[2] = expr_builder.constant(4);
  } else {
    auto class_num = PADDLE_GET_CONST(int, op_desc.GetAttr("class_num"));
    output.d[0] = dim_x.d[0];
    output.d[1] = box_num;
    output.d[2] = expr_builder.constant(class_num);
  }
  return output;
}

nvinfer1::DimsExprs InstanceNormInferMeta(
    int output_index,
    const nvinfer1::DimsExprs* inputs,
    int nb_inputs,
    nvinfer1::IExprBuilder& expr_builder,  // NOLINT
    const framework::OpDesc& op_desc) {
  nvinfer1::DimsExprs x_dims = inputs[0];
  return x_dims;
}

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
inline const nvinfer1::IDimensionExpr* CalcOutputSize(
    const nvinfer1::IDimensionExpr* input_size,
    const nvinfer1::IDimensionExpr* filter_size,
    const nvinfer1::IDimensionExpr* dilation,
    const nvinfer1::IDimensionExpr* padding1,
    const nvinfer1::IDimensionExpr* padding2,
    const nvinfer1::IDimensionExpr* stride,
    nvinfer1::IExprBuilder& expr_builder  // NOLINT
) {
  // dkernel = dilation * (filter_size - 1) + 1;
  const nvinfer1::IDimensionExpr* dkernel = expr_builder.operation(
      nvinfer1::DimensionOperation::kSUM,
      *expr_builder.operation(
          nvinfer1::DimensionOperation::kPROD,
          *dilation,
          *expr_builder.operation(nvinfer1::DimensionOperation::kSUB,
                                  *filter_size,
                                  *expr_builder.constant(1))),
      *expr_builder.constant(1));

  // output_size = (input_size + padding1 + padding2 - dkernel) / stride + 1;
  const nvinfer1::IDimensionExpr* tmp = expr_builder.operation(
      nvinfer1::DimensionOperation::kSUB,
      *expr_builder.operation(
          nvinfer1::DimensionOperation::kSUM,
          *expr_builder.operation(
              nvinfer1::DimensionOperation::kSUM, *input_size, *padding1),
          *padding2),
      *dkernel);

  const nvinfer1::IDimensionExpr* output_size = expr_builder.operation(
      nvinfer1::DimensionOperation::kSUM,
      *expr_builder.operation(
          nvinfer1::DimensionOperation::kFLOOR_DIV, *tmp, *stride),
      *expr_builder.constant(1));
  return output_size;
}

nvinfer1::DimsExprs UnflodInferMeta(
    int output_index,
    const nvinfer1::DimsExprs* inputs,
    int nb_inputs,
    nvinfer1::IExprBuilder& expr_builder,  // NOLINT
    const framework::OpDesc& op_desc) {
  PADDLE_ENFORCE_EQ(
      nb_inputs,
      1,
      phi::errors::InvalidArgument("inputs of unfold should be equal to 1, "
                                   "But received (%s)",
                                   nb_inputs));

  const nvinfer1::DimsExprs in_dims = inputs[0];
  std::vector<const nvinfer1::IDimensionExpr*> out_dims;
  out_dims.push_back(in_dims.d[0]);

  auto kernel_sizes =
      PADDLE_GET_CONST(std::vector<int>, op_desc.GetAttr("kernel_sizes"));
  auto dilations =
      PADDLE_GET_CONST(std::vector<int>, op_desc.GetAttr("dilations"));
  auto paddings =
      PADDLE_GET_CONST(std::vector<int>, op_desc.GetAttr("paddings"));
  auto strides = PADDLE_GET_CONST(std::vector<int>, op_desc.GetAttr("strides"));

  // output_channels = in_dims[1] * kernel_sizes[0] * kernel_sizes[1];
  const nvinfer1::IDimensionExpr* output_channels = expr_builder.operation(
      nvinfer1::DimensionOperation::kPROD,
      *in_dims.d[1],
      *expr_builder.operation(nvinfer1::DimensionOperation::kPROD,
                              *expr_builder.constant(kernel_sizes[0]),
                              *expr_builder.constant(kernel_sizes[1])));
  out_dims.push_back(output_channels);

  const nvinfer1::IDimensionExpr* output_height =
      CalcOutputSize(in_dims.d[2],
                     expr_builder.constant(kernel_sizes[0]),
                     expr_builder.constant(dilations[0]),
                     expr_builder.constant(paddings[0]),
                     expr_builder.constant(paddings[2]),
                     expr_builder.constant(strides[0]),
                     expr_builder);
  const nvinfer1::IDimensionExpr* output_width =
      CalcOutputSize(in_dims.d[3],
                     expr_builder.constant(kernel_sizes[1]),
                     expr_builder.constant(dilations[1]),
                     expr_builder.constant(paddings[1]),
                     expr_builder.constant(paddings[3]),
                     expr_builder.constant(strides[1]),
                     expr_builder);

  const nvinfer1::IDimensionExpr* output_col_length = expr_builder.operation(
      nvinfer1::DimensionOperation::kPROD, *output_height, *output_width);

  out_dims.push_back(output_col_length);
  nvinfer1::DimsExprs output;
  output.nbDims = out_dims.size();
  for (size_t i = 0; i < out_dims.size(); i++) output.d[i] = out_dims[i];
  return output;
}

nvinfer1::DimsExprs ScatterNdAddInferMeta(
    int output_index,
    const nvinfer1::DimsExprs* inputs,
    int nb_inputs,
    nvinfer1::IExprBuilder& expr_builder,  // NOLINT
    const framework::OpDesc& op_desc) {
  PADDLE_ENFORCE_EQ(nb_inputs,
                    3,
                    phi::errors::InvalidArgument(
                        "inputs of scatter_nd_add should be equal to 3, "
                        "But received (%s)",
                        nb_inputs));
  const nvinfer1::DimsExprs ref_dims = inputs[0];
  return ref_dims;
}

nvinfer1::DimsExprs UnchangedInferMeta(
    int output_index,
    const nvinfer1::DimsExprs* inputs,
    int nb_inputs,
    nvinfer1::IExprBuilder& expr_builder,  // NOLINT
    const framework::OpDesc& op_desc) {
  PADDLE_ENFORCE_EQ(nb_inputs,
                    1,
                    phi::errors::InvalidArgument(
                        "inputs of UnchangedInferMeta should be equal to 1, "
                        "But received (%s)",
                        nb_inputs));
  return inputs[0];
}

238 239 240 241 242 243 244 245 246
nvinfer1::DimsExprs MoeInferMeta(
    int output_index,
    const nvinfer1::DimsExprs* inputs,
    int nb_inputs,
    nvinfer1::IExprBuilder& expr_builder,  // NOLINT
    const framework::OpDesc& op_desc) {
  return inputs[0];
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
nvinfer1::DimsExprs Pad3dInferMeta(
    int output_index,
    const nvinfer1::DimsExprs* inputs,
    int nb_inputs,
    nvinfer1::IExprBuilder& expr_builder,  // NOLINT
    const framework::OpDesc& op_desc) {
  const nvinfer1::DimsExprs x_dim = inputs[0];

  nvinfer1::DimsExprs out_dims;
  out_dims.nbDims = x_dim.nbDims;

  out_dims.d[0] = x_dim.d[0];

  auto paddings =
      PADDLE_GET_CONST(std::vector<int>, op_desc.GetAttr("paddings"));
  auto data_format =
      PADDLE_GET_CONST(std::string, op_desc.GetAttr("data_format"));

  if (data_format == "NCDHW") {
    out_dims.d[1] = x_dim.d[1];
  } else {
    out_dims.d[4] = x_dim.d[4];
  }

  if (data_format == "NCDHW") {
    // depth
    out_dims.d[2] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                *x_dim.d[2],
                                *expr_builder.constant(paddings[4])),
        *expr_builder.constant(paddings[5]));
    // height
    out_dims.d[3] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                *x_dim.d[3],
                                *expr_builder.constant(paddings[2])),
        *expr_builder.constant(paddings[3]));
    // width
    out_dims.d[4] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                *x_dim.d[4],
                                *expr_builder.constant(paddings[0])),
        *expr_builder.constant(paddings[1]));
  } else {  // NDHWC
    // depth
    out_dims.d[1] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                *x_dim.d[1],
                                *expr_builder.constant(paddings[4])),
        *expr_builder.constant(paddings[5]));
    // height
    out_dims.d[2] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                *x_dim.d[2],
                                *expr_builder.constant(paddings[2])),
        *expr_builder.constant(paddings[3]));
    // width
    out_dims.d[3] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                *x_dim.d[3],
                                *expr_builder.constant(paddings[0])),
        *expr_builder.constant(paddings[1]));
  }
  return out_dims;
}

nvinfer1::DimsExprs PNormInferMeta(
    int output_index,
    const nvinfer1::DimsExprs* inputs,
    int nb_inputs,
    nvinfer1::IExprBuilder& expr_builder,  // NOLINT
    const framework::OpDesc& op_desc) {
  bool asvector = PADDLE_GET_CONST(bool, op_desc.GetAttr("asvector"));
  bool keepdim = PADDLE_GET_CONST(bool, op_desc.GetAttr("keepdim"));
  int axis = PADDLE_GET_CONST(int, op_desc.GetAttr("axis"));

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
  auto x_dim = inputs[0];
  auto x_rank = x_dim.nbDims;

  PADDLE_ENFORCE_GE(axis,
                    -x_rank,
                    phi::errors::InvalidArgument(
                        "Attr(axis) value should be in range [-R, R-1], R is "
                        "the rank of Input(X). But received axis: %d, R: %d. "
                        "Current Input(X)'s shape is=[%s].",
                        axis,
                        x_rank,
                        x_dim.d));
  PADDLE_ENFORCE_LT(axis,
                    x_rank,
                    phi::errors::InvalidArgument(
                        "Attr(axis) value should be in range [-R, R-1], R is "
                        "the rank of Input(X). But received axis: %d, R: %d. "
                        "Current Input(X)'s shape is=[%s].",
                        axis,
                        x_rank,
                        x_dim.d));

  // TODO(liuyuanle): support asvector = True
  PADDLE_ENFORCE_EQ(
      asvector,
      false,
      phi::errors::InvalidArgument(
          "p_norm only support asvector=false, but received asvector: %d.",
          asvector));

  std::vector<const nvinfer1::IDimensionExpr*> reduce_dims;

361 362 363 364
  if (asvector) {
    reduce_dims.emplace_back(expr_builder.constant(1));
    if (keepdim) {
      for (int i = 1; i < x_dim.nbDims; ++i) {
365 366 367 368 369
        reduce_dims.emplace_back(expr_builder.constant(1));
      }
      x_dim.nbDims = reduce_dims.size();
      for (size_t i = 0; i < reduce_dims.size(); i++) {
        x_dim.d[i] = reduce_dims[i];
370 371 372 373 374 375 376 377 378 379 380
      }
    }
  } else {
    if (axis < 0) axis = x_dim.nbDims + axis;
    for (int i = 0; i < x_dim.nbDims; ++i) {
      if (i != axis) reduce_dims.emplace_back(x_dim.d[i]);
    }
    if (reduce_dims.size() == 0) {
      reduce_dims.emplace_back(expr_builder.constant(1));
    }
  }
381
  x_dim.d[axis] = expr_builder.constant(1);
382 383 384

  nvinfer1::DimsExprs output;
  if (keepdim) {
385
    output = x_dim;
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
  } else {
    output.nbDims = reduce_dims.size();
    for (int i = 0; i < output.nbDims; i++) output.d[i] = reduce_dims[i];
  }
  return output;
}

nvinfer1::DimsExprs GridSamplerInferMeta(
    int output_index,
    const nvinfer1::DimsExprs* inputs,
    int nb_inputs,
    nvinfer1::IExprBuilder& expr_builder,  // NOLINT
    const framework::OpDesc& op_desc) {
  const nvinfer1::DimsExprs x_dims = inputs[0];
  const nvinfer1::DimsExprs grid_dims = inputs[1];

  nvinfer1::DimsExprs output;
  if (grid_dims.nbDims == 4) {
    output.nbDims = 4;
    output.d[0] = x_dims.d[0];
    output.d[1] = x_dims.d[1];
    output.d[2] = grid_dims.d[1];
    output.d[3] = grid_dims.d[2];
  } else {
410
    output.nbDims = 5;
411 412 413 414 415 416 417 418 419
    output.d[0] = x_dims.d[0];
    output.d[1] = x_dims.d[1];
    output.d[2] = grid_dims.d[1];
    output.d[3] = grid_dims.d[2];
    output.d[4] = grid_dims.d[3];
  }
  return output;
}

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
nvinfer1::DimsExprs LookupTableV2InferMeta(
    int output_index,
    const nvinfer1::DimsExprs* inputs,
    int nb_inputs,
    nvinfer1::IExprBuilder& expr_builder,  // NOLINT
    const framework::OpDesc& op_desc) {
  const auto x_dims = inputs[0];
  const auto weight_dims = inputs[1];

  nvinfer1::DimsExprs output;
  output.nbDims = x_dims.nbDims + 1;
  for (int i = 0; i < x_dims.nbDims; ++i) {
    output.d[i] = x_dims.d[i];
  }
  output.d[x_dims.nbDims] = weight_dims.d[1];
  return output;
}

W
weishengying 已提交
438
PD_REGISTER_DYNAMIC_INFER_META_FN(gather_nd, GatherNdInferMeta);
439 440
PD_REGISTER_DYNAMIC_INFER_META_FN(yolo_box, YoloBoxInferMeta);
PD_REGISTER_DYNAMIC_INFER_META_FN(instance_norm, InstanceNormInferMeta);
441 442 443
PD_REGISTER_DYNAMIC_INFER_META_FN(unfold, UnflodInferMeta);
PD_REGISTER_DYNAMIC_INFER_META_FN(scatter_nd_add, ScatterNdAddInferMeta);
PD_REGISTER_DYNAMIC_INFER_META_FN(inverse, UnchangedInferMeta);
444
PD_REGISTER_DYNAMIC_INFER_META_FN(moe, MoeInferMeta);
445 446
PD_REGISTER_DYNAMIC_INFER_META_FN(pad3d, Pad3dInferMeta);
PD_REGISTER_DYNAMIC_INFER_META_FN(grid_sampler, GridSamplerInferMeta);
447
PD_REGISTER_DYNAMIC_INFER_META_FN(p_norm, PNormInferMeta);
448

W
weishengying 已提交
449 450 451
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle