unpool_op.cc 5.7 KB
Newer Older
S
sweetsky0901 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
S
sweetsky0901 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/unpool_op.h"
S
sweetsky0901 已提交
16 17 18 19 20
namespace paddle {
namespace operators {

class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
21
  Unpool2dOpMaker(OpProto* proto, OpAttrChecker* op_checker)
S
sweetsky0901 已提交
22
      : OpProtoAndCheckerMaker(proto, op_checker) {
S
sweetsky0901 已提交
23 24
    AddInput(
        "X",
S
sweetsky0901 已提交
25 26 27
        "(Tensor) The input tensor of unpool operator. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
S
sweetsky0901 已提交
28 29
    AddInput(
        "Indices",
S
sweetsky0901 已提交
30 31 32
        "(Tensor) The input tensor of the indices given out by MaxPool2d. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
S
sweetsky0901 已提交
33
    AddOutput("Out",
S
sweetsky0901 已提交
34 35 36 37 38
              "(Tensor) The output tensor of unpool operator."
              "The format of output tensor is also NCHW."
              "Where N is batch size, C is "
              "the number of channels, H and W is the height and "
              "width of feature.");
S
sweetsky0901 已提交
39 40
    AddAttr<std::vector<int>>(
        "ksize",
S
sweetsky0901 已提交
41
        "(vector), the unpooling window size(height, width) "
S
sweetsky0901 已提交
42
        "of unpooling operator.");
S
sweetsky0901 已提交
43 44 45
    AddAttr<std::vector<int>>("strides",
                              "(vector, default:{1, 1}), "
                              "strides (height, width) of unpooling operator.")
S
sweetsky0901 已提交
46
        .SetDefault({1, 1});
S
sweetsky0901 已提交
47 48 49
    AddAttr<std::vector<int>>("paddings",
                              "(vector defalut:{0,0}), "
                              "paddings (height, width) of unpooling operator.")
S
sweetsky0901 已提交
50
        .SetDefault({0, 0});
S
sweetsky0901 已提交
51 52
    AddAttr<std::string>(
        "unpooling_type",
S
sweetsky0901 已提交
53 54
        "(string), unpooling type, can be \"max\" for max-unpooling ")
        .InEnum({"max"});
S
sweetsky0901 已提交
55
    AddComment(R"DOC(
Y
ying 已提交
56 57
Input shape is: $(N, C_{in}, H_{in}, W_{in})$, Output shape is:
$(N, C_{out}, H_{out}, W_{out})$, where
Y
ying 已提交
58 59 60 61 62 63
$$
H_{out} = (H_{in}−1) * strides[0] − 2 * paddings[0] + ksize[0] \\
W_{out} = (W_{in}−1) * strides[1] − 2 * paddings[1] + ksize[1]
$$
Paper: http://www.matthewzeiler.com/wp-content/uploads/2017/07/iccv2011.pdf
)DOC");
S
sweetsky0901 已提交
64 65 66 67
  }
};

int OutputSize(int input_size, int ksize, int padding, int stride) {
S
sweetsky0901 已提交
68
  int output_size = (input_size - 1) * stride - 2 * padding + ksize;
S
sweetsky0901 已提交
69 70 71 72
  return output_size;
}

class UnpoolOp : public framework::OperatorWithKernel {
S
sweetsky0901 已提交
73
 protected:
74
  framework::OpKernelType GetExpectedKernelType(
S
sweetsky0901 已提交
75 76 77
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
S
sweetsky0901 已提交
78
        ctx.device_context());
S
sweetsky0901 已提交
79
  }
S
sweetsky0901 已提交
80

S
sweetsky0901 已提交
81 82 83
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
S
sweetsky0901 已提交
84 85 86 87 88
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of UnpoolOp"
                   "should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Indices"),
                   "Input(Indices) of UnpoolOp"
S
sweetsky0901 已提交
89
                   "should not be null.");
S
sweetsky0901 已提交
90
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
S
sweetsky0901 已提交
91
                   "Output(Out) of UnpoolOp should not be null.");
S
sweetsky0901 已提交
92 93
    auto in_x_dims = ctx->GetInputDim("X");
    auto in_y_dims = ctx->GetInputDim("Indices");
S
sweetsky0901 已提交
94 95
    std::string unpooling_type =
        ctx->Attrs().Get<std::string>("unpooling_type");
S
sweetsky0901 已提交
96 97
    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
S
sweetsky0901 已提交
98
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
S
sweetsky0901 已提交
99
    PADDLE_ENFORCE(in_x_dims.size() == 4,
S
sweetsky0901 已提交
100
                   "Unpooling intput must be of 4-dimensional.");
S
sweetsky0901 已提交
101 102 103 104
    PADDLE_ENFORCE_EQ(in_x_dims, in_y_dims);
    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
    for (size_t i = 0; i < ksize.size(); ++i) {
      output_shape.push_back(
S
sweetsky0901 已提交
105
          OutputSize(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
S
sweetsky0901 已提交
106 107 108
    }
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
  }
S
sweetsky0901 已提交
109 110 111
};

class UnpoolOpGrad : public framework::OperatorWithKernel {
S
sweetsky0901 已提交
112
 protected:
113
  framework::OpKernelType GetExpectedKernelType(
S
sweetsky0901 已提交
114 115
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
S
sweetsky0901 已提交
116 117
        framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
        ctx.device_context());
S
sweetsky0901 已提交
118
  }
S
sweetsky0901 已提交
119

S
sweetsky0901 已提交
120 121 122 123 124
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
S
sweetsky0901 已提交
125
                   "Input(X@GRAD) should not be null.");
S
sweetsky0901 已提交
126 127
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
S
sweetsky0901 已提交
128
};
S
sweetsky0901 已提交
129 130
}  // namespace operators
}  // namespace paddle
S
sweetsky0901 已提交
131 132

namespace ops = paddle::operators;
S
sweetsky0901 已提交
133
REGISTER_OP(unpool, ops::UnpoolOp, ops::Unpool2dOpMaker, unpool_grad,
S
sweetsky0901 已提交
134
            ops::UnpoolOpGrad);
S
sweetsky0901 已提交
135
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
136 137 138 139 140 141
    unpool, ops::UnpoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnpoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    unpool_grad,
    ops::UnpoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnpoolGradKernel<paddle::platform::CPUDeviceContext, double>);