Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
90f664d0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
90f664d0
编写于
11月 22, 2017
作者:
S
sweetsky0901
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test unpool ok cpu
上级
822f2834
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
98 addition
and
80 deletion
+98
-80
paddle/operators/CMakeLists.txt
paddle/operators/CMakeLists.txt
+0
-7
paddle/operators/math/unpooling.cc
paddle/operators/math/unpooling.cc
+4
-5
paddle/operators/math/unpooling.cu
paddle/operators/math/unpooling.cu
+2
-2
paddle/operators/unpool_op.cc
paddle/operators/unpool_op.cc
+12
-13
paddle/operators/unpool_op.cu.cc
paddle/operators/unpool_op.cu.cc
+2
-2
paddle/operators/unpool_op.h
paddle/operators/unpool_op.h
+4
-4
python/paddle/v2/fluid/tests/test_unpool2d_op.py
python/paddle/v2/fluid/tests/test_unpool2d_op.py
+0
-47
python/paddle/v2/fluid/tests/test_unpool_op.py
python/paddle/v2/fluid/tests/test_unpool_op.py
+74
-0
未找到文件。
paddle/operators/CMakeLists.txt
浏览文件 @
90f664d0
...
...
@@ -80,13 +80,6 @@ function(op_library TARGET)
file
(
APPEND
${
pybind_file
}
"USE_OP(pool2d);
\n
"
)
endif
()
# unpool_op contains several operators
if
(
"
${
TARGET
}
"
STREQUAL
"unpool_op"
)
set
(
pybind_flag 1
)
# It's enough to just adding one operator to pybind
file
(
APPEND
${
pybind_file
}
"USE_OP(unpool2d);
\n
"
)
endif
()
# pool_cudnn_op contains several operators
if
(
"
${
TARGET
}
"
STREQUAL
"pool_cudnn_op"
)
set
(
pybind_flag 1
)
...
...
paddle/operators/math/unpooling.cc
浏览文件 @
90f664d0
...
...
@@ -32,13 +32,13 @@ class Unpool2dMaxFunctor<platform::CPUPlace, T> {
const
int
output_channels
=
output
->
dims
()[
1
];
const
int
output_height
=
output
->
dims
()[
2
];
const
int
output_width
=
output
->
dims
()[
3
];
int
input_feasize
=
input_height
*
input_width
;
int
output_feasize
=
output_height
*
output_width
;
const
T
*
input_data
=
input
.
data
<
T
>
();
const
int
*
indices_data
=
indices
.
data
<
int
>
();
const
T
*
indices_data
=
indices
.
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
memset
(
output_data
,
0
,
\
sizeof
(
T
)
*
output_feasize
*
output_channels
*
batch_size
);
for
(
int
b
=
0
;
b
<
batch_size
;
++
b
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
i
=
0
;
i
<
input_feasize
;
++
i
)
{
...
...
@@ -74,9 +74,8 @@ public:
int
input_feasize
=
input_height
*
input_width
;
int
output_feasize
=
output_height
*
output_width
;
const
int
*
indices_data
=
indices
.
data
<
int
>
();
const
T
*
indices_data
=
indices
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
b
=
0
;
b
<
batch_size
;
++
b
)
{
...
...
paddle/operators/math/unpooling.cu
浏览文件 @
90f664d0
...
...
@@ -76,7 +76,7 @@ class Unpool2dMaxFunctor<platform::GPUPlace, T> {
const
int
output_height
=
output
->
dims
()[
2
];
const
int
output_width
=
output
->
dims
()[
3
];
const
T
*
input_data
=
input
.
data
<
T
>
();
const
int
*
indices_data
=
indices
.
data
<
int
>
();
const
T
*
indices_data
=
indices
.
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
nthreads
=
output
->
numel
();
...
...
@@ -111,7 +111,7 @@ class Unpool2dMaxGradFunctor<platform::GPUPlace, T> {
const
int
output_height
=
output
.
dims
()[
2
];
const
int
output_width
=
output
.
dims
()[
3
];
const
T
*
input_data
=
input
.
data
<
T
>
();
const
int
*
indices_data
=
indices
.
data
<
int
>
();
const
T
*
indices_data
=
indices
.
data
<
T
>
();
const
T
*
output_data
=
output
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
...
...
paddle/operators/unpool_op.cc
浏览文件 @
90f664d0
...
...
@@ -48,7 +48,7 @@ class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker {
"(vector defalut:{0,0}), "
"paddings(height, width) of unpooling operator."
)
.
SetDefault
({
0
,
0
});
AddAttr
<
std
::
string
>
(
"unpooling
T
ype"
,
AddAttr
<
std
::
string
>
(
"unpooling
t
ype"
,
"(string), unpooling type, can be
\"
max
\"
for max-unpooling "
)
.
InEnum
({
"max"
});
AddComment
(
R"DOC(
...
...
@@ -80,8 +80,8 @@ class UnpoolOp : public framework::OperatorWithKernel {
auto
in_x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
in_y_dims
=
ctx
->
GetInputDim
(
"Y"
);
std
::
string
unpooling
_
type
=
\
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"unpooling
_
type"
);
std
::
string
unpoolingtype
=
\
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"unpoolingtype"
);
std
::
vector
<
int
>
ksize
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
...
...
@@ -108,9 +108,9 @@ class UnpoolOpGrad : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) must not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Y"
),
"Input(Y) must not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should not be null"
);
//
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) must not be null.");
//
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
//
"Input(Out@GRAD) should not be null");
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
"Input(X@GRAD) should not be null."
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
...
...
@@ -120,13 +120,12 @@ class UnpoolOpGrad : public framework::OperatorWithKernel {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
unpool
2d
,
ops
::
UnpoolOp
,
ops
::
Unpool2dOpMaker
,
unpool2d
_grad
,
REGISTER_OP
(
unpool
,
ops
::
UnpoolOp
,
ops
::
Unpool2dOpMaker
,
unpool
_grad
,
ops
::
UnpoolOpGrad
);
REGISTER_OP_CPU_KERNEL
(
unpool
2d
,
REGISTER_OP_CPU_KERNEL
(
unpool
,
ops
::
UnpoolKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
UnpoolKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
unpool2d_grad
,
ops
::
UnpoolGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
UnpoolGradKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
unpool_grad
,
ops
::
UnpoolGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
UnpoolGradKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
paddle/operators/unpool_op.cu.cc
浏览文件 @
90f664d0
...
...
@@ -15,10 +15,10 @@
#include "paddle/operators/unpool_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
unpool
2d
,
REGISTER_OP_GPU_KERNEL
(
unpool
,
ops
::
UnpoolKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
UnpoolKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
REGISTER_OP_GPU_KERNEL
(
unpool
2d
_grad
,
REGISTER_OP_GPU_KERNEL
(
unpool_grad
,
ops
::
UnpoolGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
UnpoolGradKernel
<
paddle
::
platform
::
GPUPlace
,
...
...
paddle/operators/unpool_op.h
浏览文件 @
90f664d0
...
...
@@ -30,13 +30,13 @@ class UnpoolKernel : public framework::OpKernel<T> {
const
Tensor
*
in_x
=
context
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
in_y
=
context
.
Input
<
Tensor
>
(
"Y"
);
Tensor
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
std
::
string
pooling_type
=
context
.
Attr
<
std
::
string
>
(
"unpooling_
type"
);
std
::
string
unpoolingtype
=
context
.
Attr
<
std
::
string
>
(
"unpooling
type"
);
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
switch
(
ksize
.
size
())
{
case
2
:
{
if
(
pooling_
type
==
"max"
)
{
if
(
unpooling
type
==
"max"
)
{
math
::
Unpool2dMaxFunctor
<
Place
,
T
>
unpool2d_max_forward
;
unpool2d_max_forward
(
context
.
device_context
(),
*
in_x
,
*
in_y
,
out
);
}
...
...
@@ -56,7 +56,7 @@ class UnpoolGradKernel : public framework::OpKernel<T> {
const
Tensor
*
out_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
Tensor
*
in_x_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
std
::
string
pooling_type
=
context
.
Attr
<
std
::
string
>
(
"unpooling_
type"
);
std
::
string
unpoolingtype
=
context
.
Attr
<
std
::
string
>
(
"unpooling
type"
);
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
...
...
@@ -69,7 +69,7 @@ class UnpoolGradKernel : public framework::OpKernel<T> {
}
switch
(
ksize
.
size
())
{
case
2
:
{
if
(
pooling_
type
==
"max"
)
{
if
(
unpooling
type
==
"max"
)
{
math
::
Unpool2dMaxGradFunctor
<
Place
,
T
>
unpool2d_max_backward
;
unpool2d_max_backward
(
context
.
device_context
(),
*
in_x
,
*
in_y
,
in_x_grad
,
*
out
,
*
out_grad
);
...
...
python/paddle/v2/fluid/tests/test_unpool2d_op.py
已删除
100644 → 0
浏览文件 @
822f2834
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
def
maxout_forward_naive
(
input
,
groups
):
s0
,
s1
,
s2
,
s3
=
input
.
shape
return
np
.
ndarray
([
s0
,
s1
/
groups
,
groups
,
s2
,
s3
],
\
buffer
=
input
,
dtype
=
input
.
dtype
).
max
(
axis
=
(
2
))
class
TestUnpool2dOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"unpool2d"
self
.
init_test_case
()
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)
output
=
self
.
MaxOut_forward_naive
(
input
,
self
.
groups
).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
input
}
self
.
attrs
=
{
'strides'
:
self
.
strides
,
'paddings'
:
self
.
paddings
,
'ksize'
:
self
.
ksize
,
'unpooling_type'
:
self
.
pool_type
,
}
self
.
outputs
=
{
'Out'
:
output
.
astype
(
'float32'
)}
def
init_pool_type
(
self
):
self
.
pool_type
=
"max"
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
def
init_test_case
(
self
):
self
.
MaxOut_forward_naive
=
maxout_forward_naive
self
.
shape
=
[
100
,
6
,
2
,
2
]
self
.
groups
=
2
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/fluid/tests/test_unpool_op.py
0 → 100644
浏览文件 @
90f664d0
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
def
unpool2dmax_forward_naive
(
input
,
indices
,
ksize
,
strides
,
paddings
):
s0
,
s1
,
s2
,
s3
=
input
.
shape
out_H
=
(
s2
-
1
)
*
strides
[
0
]
-
2
*
paddings
[
0
]
+
ksize
[
0
]
out_W
=
(
s2
-
1
)
*
strides
[
1
]
-
2
*
paddings
[
1
]
+
ksize
[
1
]
out
=
np
.
zeros
((
s0
,
s1
,
out_H
,
out_W
))
for
nidx
in
xrange
(
s0
):
for
cidx
in
xrange
(
s1
):
for
h
in
xrange
(
s2
):
for
w
in
xrange
(
s3
):
index
=
indices
[
nidx
,
cidx
,
h
,
w
]
hidx
=
(
index
-
index
%
out_W
)
/
out_W
widx
=
index
%
out_W
out
[
nidx
,
cidx
,
int
(
hidx
),
int
(
widx
)]
=
input
[
nidx
,
cidx
,
h
,
w
]
return
out
class
TestUnpoolOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"unpool"
self
.
init_test_case
()
pre_input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)
N
,
C
,
H
,
W
=
pre_input
.
shape
H_out
=
(
H
-
self
.
ksize
[
0
]
+
2
*
self
.
paddings
[
0
])
/
self
.
strides
[
0
]
+
1
W_out
=
(
W
-
self
.
ksize
[
1
]
+
2
*
self
.
paddings
[
1
])
/
self
.
strides
[
1
]
+
1
input
=
np
.
zeros
((
N
,
C
,
H_out
,
W_out
))
indices
=
np
.
zeros
((
N
,
C
,
H_out
,
W_out
))
for
i
in
xrange
(
H_out
):
for
j
in
xrange
(
W_out
):
r_start
=
np
.
max
((
i
*
self
.
strides
[
0
]
-
self
.
paddings
[
0
],
0
))
r_end
=
np
.
min
((
i
*
self
.
strides
[
0
]
+
self
.
ksize
[
0
]
-
self
.
paddings
[
0
],
H
))
c_start
=
np
.
max
((
j
*
self
.
strides
[
1
]
-
self
.
paddings
[
1
],
0
))
c_end
=
np
.
min
((
j
*
self
.
strides
[
1
]
+
self
.
ksize
[
1
]
-
self
.
paddings
[
1
],
W
))
for
nidx
in
xrange
(
N
):
for
cidx
in
xrange
(
C
):
x_masked
=
pre_input
[
nidx
,
cidx
,
r_start
:
r_end
,
c_start
:
c_end
]
input
[
nidx
,
cidx
,
i
,
j
]
=
x_masked
.
max
()
arg
=
x_masked
.
argmax
()
indices
[
nidx
,
cidx
,
i
,
j
]
=
(
r_start
+
arg
/
self
.
ksize
[
1
])
*
W
+
c_start
+
arg
%
self
.
ksize
[
1
]
output
=
self
.
Unpool2d_forward_naive
(
input
,
indices
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
input
.
astype
(
'float32'
),
'Y'
:
indices
.
astype
(
'int16'
)}
self
.
attrs
=
{
'strides'
:
self
.
strides
,
'paddings'
:
self
.
paddings
,
'ksize'
:
self
.
ksize
,
'unpoolingtype'
:
self
.
unpoolingtype
,
}
self
.
outputs
=
{
'Out'
:
output
.
astype
(
'float32'
)}
def
test_check_output
(
self
):
print
self
.
outputs
[
'Out'
]
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
,
max_relative_error
=
0.5
)
def
init_test_case
(
self
):
self
.
Unpool2d_forward_naive
=
unpool2dmax_forward_naive
self
.
unpoolingtype
=
"max"
self
.
shape
=
[
10
,
2
,
5
,
5
]
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
2
,
2
]
self
.
paddings
=
[
0
,
0
]
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录