test_elementwise_add_mkldnn_op.py 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import unittest
16

17
import numpy as np
18 19

from paddle import enable_static
20
from paddle.fluid.tests.unittests.eager_op_test import skip_check_grad_ci
21 22 23
from paddle.fluid.tests.unittests.test_elementwise_add_op import (
    TestElementwiseAddOp,
)
24 25


26
class TestOneDNNElementwiseAddOp(TestElementwiseAddOp):
27 28 29
    def init_kernel_type(self):
        self.use_mkldnn = True

30 31
    def init_dtype(self):
        self.dtype = np.float32
32 33


34
class TestOneDNNElementwiseAddOp2(TestOneDNNElementwiseAddOp):
35
    def init_input_output(self):
36 37
        self.x = np.random.random((100,)).astype(self.dtype)
        self.y = np.random.random((100,)).astype(self.dtype)
38
        self.out = np.add(self.x, self.y)
39 40


41
class TestOneDNNElementwiseAddOp3(TestOneDNNElementwiseAddOp):
42
    def init_input_output(self):
43 44 45
        self.x = np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype(self.dtype)
        self.y = np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype(self.dtype)
        self.out = np.add(self.x, self.y)
46 47


48
class TestOneDNNElementwiseAddOp4(TestOneDNNElementwiseAddOp):
49 50 51 52 53 54 55 56 57 58 59 60 61
    def init_input_output(self):
        self.x = np.random.uniform(1, 2, [2, 3, 4, 32]).astype(self.dtype)
        self.y = np.random.uniform(1, 2, [4, 32]).astype(self.dtype)
        self.out = np.add(self.x, self.y)

    # TODO(jczaja): Enable when grad is ready
    def test_check_grad_normal(self):
        pass

    def test_check_grad_ingore_y(self):
        pass


62
class TestOneDNNElementwiseAddOp5(TestOneDNNElementwiseAddOp):
63 64 65 66 67 68
    def init_input_output(self):
        self.x = np.random.uniform(1, 2, [2, 3, 4, 100]).astype(self.dtype)
        self.y = np.random.uniform(1, 2, [100]).astype(self.dtype)
        self.out = np.add(self.x, self.y)


69
class TestOneDNNElementwiseAddOpBroadcastXintoY(TestOneDNNElementwiseAddOp):
70 71 72 73 74 75
    def init_input_output(self):
        self.x = np.random.uniform(1, 2, [2, 50, 1]).astype(self.dtype)
        self.y = np.random.uniform(1, 2, [2, 50, 160]).astype(self.dtype)
        self.out = np.add(self.x, self.y)


76
class TestOneDNNElementwiseAddOp_broadcast_3(TestOneDNNElementwiseAddOp):
77 78 79 80 81 82 83 84 85
    def init_input_output(self):
        self.x = np.random.rand(2, 10, 12, 3).astype(self.dtype)
        self.y = np.random.rand(10, 12).astype(self.dtype)
        self.out = self.x + self.y.reshape(1, 10, 12, 1)

    def init_axis(self):
        self.axis = 1


86
class TestElementwiseAddOp_xsize_lessthan_ysize_add(TestOneDNNElementwiseAddOp):
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    def init_input_output(self):
        self.x = np.random.rand(10, 12).astype(self.dtype)
        self.y = np.random.rand(2, 2, 10, 12).astype(self.dtype)
        self.out = self.x + self.y

    def init_axis(self):
        self.axis = 2

    # TODO(jczaja): Enable when grad is ready
    def test_check_grad_normal(self):
        pass

    def test_check_grad_ingore_y(self):
        pass

    def test_check_grad_ingore_x(self):
        pass


106
class TestOneDNNlementwiseAddOpZeroDim(TestOneDNNElementwiseAddOp):
107 108 109 110 111 112
    def init_input_output(self):
        self.x = np.random.random((100,)).astype(self.dtype)
        self.y = np.array(3.0).astype(self.dtype)
        self.out = np.add(self.x, self.y)


113
class TestOneDNNlementwiseAddOpZeroDim2(TestOneDNNElementwiseAddOp):
114 115 116 117 118 119
    def init_input_output(self):
        self.x = np.array(3.0).astype(self.dtype)
        self.y = np.random.random((100,)).astype(self.dtype)
        self.out = np.add(self.x, self.y)


120
class TestOneDNNlementwiseAddOpZeroDim3(TestOneDNNElementwiseAddOp):
121 122 123 124 125 126
    def init_input_output(self):
        self.x = np.array(3.0).astype(self.dtype)
        self.y = np.array(3.0).astype(self.dtype)
        self.out = np.add(self.x, self.y)


127 128 129 130
''' INT8 Tests '''


@skip_check_grad_ci(
131 132
    reason="oneDNN's int8 elementwise_ops don't implemend grad kernel."
)
133 134 135 136 137 138 139 140 141 142 143 144 145 146
class TestInt8(TestElementwiseAddOp):
    def init_kernel_type(self):
        self.use_mkldnn = True
        self._cpu_only = True

    def init_dtype(self):
        self.dtype = np.int8

    def init_input_output(self):
        self.x = np.random.randint(0, 3, (12, 9)).astype("int8")
        self.y = np.random.randint(0, 3, (12, 9)).astype("int8")
        self.out = np.add(self.x, self.y)

    def init_scales(self):
147 148 149
        self.attrs['scale_x'] = 1.0
        self.attrs['scale_y'] = 1.0
        self.attrs['scale_out'] = 1.0
150 151 152 153

    def test_check_output(self):
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        self.init_scales()
154
        self.check_output(check_dygraph=(not self.use_mkldnn))
155 156 157 158 159 160 161 162 163 164 165

    def test_check_grad_normal(self):
        pass

    def test_check_grad_ingore_x(self):
        pass

    def test_check_grad_ingore_y(self):
        pass


166
if __name__ == '__main__':
167
    enable_static()
168
    unittest.main()