# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from paddle import enable_static from paddle.fluid.tests.unittests.eager_op_test import skip_check_grad_ci from paddle.fluid.tests.unittests.test_elementwise_add_op import ( TestElementwiseAddOp, ) class TestOneDNNElementwiseAddOp(TestElementwiseAddOp): def init_kernel_type(self): self.use_mkldnn = True def init_dtype(self): self.dtype = np.float32 class TestOneDNNElementwiseAddOp2(TestOneDNNElementwiseAddOp): def init_input_output(self): self.x = np.random.random((100,)).astype(self.dtype) self.y = np.random.random((100,)).astype(self.dtype) self.out = np.add(self.x, self.y) class TestOneDNNElementwiseAddOp3(TestOneDNNElementwiseAddOp): def init_input_output(self): self.x = np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype(self.dtype) self.y = np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype(self.dtype) self.out = np.add(self.x, self.y) class TestOneDNNElementwiseAddOp4(TestOneDNNElementwiseAddOp): def init_input_output(self): self.x = np.random.uniform(1, 2, [2, 3, 4, 32]).astype(self.dtype) self.y = np.random.uniform(1, 2, [4, 32]).astype(self.dtype) self.out = np.add(self.x, self.y) # TODO(jczaja): Enable when grad is ready def test_check_grad_normal(self): pass def test_check_grad_ingore_y(self): pass class TestOneDNNElementwiseAddOp5(TestOneDNNElementwiseAddOp): def init_input_output(self): self.x = np.random.uniform(1, 2, [2, 3, 4, 100]).astype(self.dtype) self.y = np.random.uniform(1, 2, [100]).astype(self.dtype) self.out = np.add(self.x, self.y) class TestOneDNNElementwiseAddOpBroadcastXintoY(TestOneDNNElementwiseAddOp): def init_input_output(self): self.x = np.random.uniform(1, 2, [2, 50, 1]).astype(self.dtype) self.y = np.random.uniform(1, 2, [2, 50, 160]).astype(self.dtype) self.out = np.add(self.x, self.y) class TestOneDNNElementwiseAddOp_broadcast_3(TestOneDNNElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 10, 12, 3).astype(self.dtype) self.y = np.random.rand(10, 12).astype(self.dtype) self.out = self.x + self.y.reshape(1, 10, 12, 1) def init_axis(self): self.axis = 1 class TestElementwiseAddOp_xsize_lessthan_ysize_add(TestOneDNNElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(10, 12).astype(self.dtype) self.y = np.random.rand(2, 2, 10, 12).astype(self.dtype) self.out = self.x + self.y def init_axis(self): self.axis = 2 # TODO(jczaja): Enable when grad is ready def test_check_grad_normal(self): pass def test_check_grad_ingore_y(self): pass def test_check_grad_ingore_x(self): pass class TestOneDNNlementwiseAddOpZeroDim(TestOneDNNElementwiseAddOp): def init_input_output(self): self.x = np.random.random((100,)).astype(self.dtype) self.y = np.array(3.0).astype(self.dtype) self.out = np.add(self.x, self.y) class TestOneDNNlementwiseAddOpZeroDim2(TestOneDNNElementwiseAddOp): def init_input_output(self): self.x = np.array(3.0).astype(self.dtype) self.y = np.random.random((100,)).astype(self.dtype) self.out = np.add(self.x, self.y) class TestOneDNNlementwiseAddOpZeroDim3(TestOneDNNElementwiseAddOp): def init_input_output(self): self.x = np.array(3.0).astype(self.dtype) self.y = np.array(3.0).astype(self.dtype) self.out = np.add(self.x, self.y) ''' INT8 Tests ''' @skip_check_grad_ci( reason="oneDNN's int8 elementwise_ops don't implemend grad kernel." ) class TestInt8(TestElementwiseAddOp): def init_kernel_type(self): self.use_mkldnn = True self._cpu_only = True def init_dtype(self): self.dtype = np.int8 def init_input_output(self): self.x = np.random.randint(0, 3, (12, 9)).astype("int8") self.y = np.random.randint(0, 3, (12, 9)).astype("int8") self.out = np.add(self.x, self.y) def init_scales(self): self.attrs['scale_x'] = 1.0 self.attrs['scale_y'] = 1.0 self.attrs['scale_out'] = 1.0 def test_check_output(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode self.init_scales() self.check_output(check_dygraph=(not self.use_mkldnn)) def test_check_grad_normal(self): pass def test_check_grad_ingore_x(self): pass def test_check_grad_ingore_y(self): pass if __name__ == '__main__': enable_static() unittest.main()