graph_execution_optimizer.py 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

14
import copy
15 16 17 18 19
import paddle
from paddle.fluid.framework import core
from paddle.fluid import compiler
from .meta_optimizer_base import MetaOptimizerBase
from ..base.private_helper_function import wait_server_ready
D
Dong Daxiang 已提交
20
import logging
21 22 23 24 25 26 27 28


class GraphExecutionOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(GraphExecutionOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        # we do not allow meta optimizer to be inner optimizer currently
        self.meta_optimizers_white_list = []
29
        self.meta_optimizers_black_list = []
30 31 32 33 34 35 36 37

    def _is_graph_out(self):
        return True

    def _can_apply(self):
        """
        Basically, this is PE, and almost all programs can be executed here
        """
D
Dong Daxiang 已提交
38 39 40 41
        if not self.role_maker._is_collective:
            # update me. currently, if parameter server is used
            # graph execution optimizer can not be applied
            return False
42 43 44 45 46 47 48 49 50 51
        return True

    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        pass

52
    # should fix the variable
53
    def _setup_nccl_op(self, startup_program, main_program, build_strategy):
54
        trainer_endpoints = self.role_maker._get_trainer_endpoints()
55 56
        other_trainers = copy.copy(trainer_endpoints)

57 58
        trainer_id = self.role_maker._worker_index()
        current_endpoint = self.role_maker._get_trainer_endpoints()[trainer_id]
59 60
        other_trainers.remove(current_endpoint)

61
        trainer_endpoints_env = ",".join(trainer_endpoints)
62
        trainers_num = self.role_maker._worker_num()
63

G
gongweibao 已提交
64 65 66
        # FIXME(wangxi): approve this.
        #if trainer_id == 0:
        #    wait_server_ready(other_trainers)
67

68 69
        nccl_id_var = startup_program.global_block().create_var(
            name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
70

71
        for i in range(1, build_strategy.nccl_comm_num):
72 73 74 75 76
            startup_program.global_block().create_var(
                name="NCCLID_{}".format(i),
                persistable=True,
                type=core.VarDesc.VarType.RAW)

77 78
        if build_strategy.use_hierarchical_allreduce:
            for i in range(0, build_strategy.nccl_comm_num):
79 80 81 82 83 84 85 86 87 88 89 90 91 92
                startup_program.global_block().create_var(
                    name="Hierarchical_inter_NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)
                startup_program.global_block().create_var(
                    name="Hierarchical_exter_NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

        startup_program.global_block().append_op(
            type="gen_nccl_id",
            inputs={},
            outputs={"NCCLID": nccl_id_var},
            attrs={
D
Dong Daxiang 已提交
93
                "trainers": trainer_endpoints,
94
                "trainer_id": trainer_id,
95
                "nccl_comm_num": build_strategy.nccl_comm_num,
96
                "use_hierarchical_allreduce":
97
                build_strategy.use_hierarchical_allreduce,
98
                "hierarchical_allreduce_inter_ranks":
99
                build_strategy.hierarchical_allreduce_inter_nranks
100 101 102
            })

    def _try_to_compile(self, startup_program, main_program, loss):
103
        dist_strategy = self.user_defined_strategy
104 105
        local_build_strategy = dist_strategy.build_strategy

106
        local_build_strategy.use_hierarchical_allreduce = \
107
            dist_strategy.use_hierarchical_allreduce
108
        local_build_strategy.hierarchical_allreduce_inter_nranks = \
109
            dist_strategy.hierarchical_allreduce_inter_nranks
110
        local_build_strategy.sync_batch_norm = \
111
            dist_strategy.sync_batch_norm
112
        local_build_strategy.fuse_all_reduce_ops = \
113
            dist_strategy.fuse_all_reduce_ops
114
        local_build_strategy.nccl_comm_num = \
115
            dist_strategy.nccl_comm_num
116

117 118 119 120 121 122
        if self.user_defined_strategy.recompute == True:
            logging.warn(
                "set enable_sequential_execution=True since you have enable the recompute strategy"
            )
            local_build_strategy.enable_sequential_execution = True

123
        exe_strategy = self.user_defined_strategy.execution_strategy
124 125
        worker_num = self.role_maker._worker_num()
        node_num = self.role_maker._node_num()
126

127
        if self.role_maker._is_collective:
128
            assert worker_num >= 1, "nccl2 worker_num must >= 1, now:{}" % worker_num
129

130
        if worker_num <= 1:
131
            # local mode
132
            if local_build_strategy.nccl_comm_num > 1:
133
                logging.warn("set nccl_comm_num=1 since you only have 1 node.")
134
            local_build_strategy.nccl_comm_num = 1
135

136
        if node_num <= 1:
137
            if local_build_strategy.use_hierarchical_allreduce:
138 139 140
                logging.warn(
                    "set hierachical_allreduce=False since you only have 1 node."
                )
141
            local_build_strategy.use_hierarchical_allreduce = False
142

143
        sync_allreduce = dist_strategy.sync_nccl_allreduce
144
        if sync_allreduce:
145 146 147 148
            exe_strategy.num_threads = max(
                local_build_strategy.nccl_comm_num + 1,
                exe_strategy.num_threads)
            if local_build_strategy.nccl_comm_num > 1:
149
                logging.warn(
150
                    "nccl_comm_num > 1, you may need to set sync_nccl_allreduce=False to ensure that different nccl comms can overlap"
151 152
                )

153
        sync_batch_norm = local_build_strategy.sync_batch_norm
154
        if sync_batch_norm:
155 156
            local_build_strategy.nccl_comm_num = 1
            local_build_strategy.use_hierarchical_allreduce = False
157 158 159 160 161 162
            exe_strategy.num_threads = 1
            logging.warn(
                "use sync_batch_norm will hang when set num_threads > 1, so "
                "set num_threads=1, nccl_comm_num=1, hierachical_allreduce=False."
            )

163 164 165 166 167
        # NOTE. compatible with compiler, otherwise these values will be overwritten by compiler
        main_program._nccl_comm_num = local_build_strategy.nccl_comm_num
        main_program._use_hierarchical_allreduce = local_build_strategy.use_hierarchical_allreduce
        main_program._hierarchical_allreduce_inter_nranks = local_build_strategy.hierarchical_allreduce_inter_nranks

168
        # TODO(guru4elephant): should be an independent optimizer
169
        self._setup_nccl_op(startup_program, main_program, local_build_strategy)
170

171 172 173
        local_build_strategy.num_trainers = self.role_maker._worker_num()
        local_build_strategy.trainer_id = self.role_maker._worker_index()
        local_build_strategy.trainers_endpoints = self.role_maker._get_trainer_endpoints(
174
        )
175
        local_build_strategy.enable_backward_optimizer_op_deps = True
176 177 178 179 180

        self._compiled_program = compiler.CompiledProgram(main_program)

        self._compiled_program.with_data_parallel(
            loss_name=loss.name,
181
            build_strategy=local_build_strategy,
182 183 184 185 186
            exec_strategy=exe_strategy,
            share_vars_from=None)

        return self._compiled_program

D
Dong Daxiang 已提交
187 188
    def _disable_strategy(self, dist_strategy):
        # TODO(guru4elephant): should close all PE related flags here
189 190
        return

191
    def _enable_strategy(self, dist_strategy, context):
192 193
        # by default, graph execution strategy is enabled
        return
D
Dong Daxiang 已提交
194

195 196 197 198 199 200
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        if startup_program == None:
201
            startup_program = paddle.static.default_startup_program()
202 203
        compiled_program = self._try_to_compile(startup_program,
                                                loss.block.program, loss)
204
        loss.block.program._graph = compiled_program
205 206 207

        # just return self.optimizer_ops and self.param_grads
        return None, None