Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f9c97dd7
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f9c97dd7
编写于
1月 21, 2021
作者:
G
gongweibao
提交者:
GitHub
1月 21, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add distribution supported (#30578)
Add distribution supported
上级
1882f2ce
变更
24
隐藏空白更改
内联
并排
Showing
24 changed file
with
476 addition
and
88 deletion
+476
-88
cmake/external/ascend.cmake
cmake/external/ascend.cmake
+10
-5
paddle/fluid/memory/allocation/CMakeLists.txt
paddle/fluid/memory/allocation/CMakeLists.txt
+2
-0
paddle/fluid/operators/collective/CMakeLists.txt
paddle/fluid/operators/collective/CMakeLists.txt
+5
-0
paddle/fluid/operators/collective/gen_nccl_id_op.cc
paddle/fluid/operators/collective/gen_nccl_id_op.cc
+17
-0
paddle/fluid/platform/CMakeLists.txt
paddle/fluid/platform/CMakeLists.txt
+10
-0
paddle/fluid/platform/ascend_npu_info.cc
paddle/fluid/platform/ascend_npu_info.cc
+35
-0
paddle/fluid/platform/ascend_npu_info.h
paddle/fluid/platform/ascend_npu_info.h
+28
-0
paddle/fluid/pybind/ascend_wrapper_py.cc
paddle/fluid/pybind/ascend_wrapper_py.cc
+8
-0
paddle/fluid/pybind/ascend_wrapper_py.h
paddle/fluid/pybind/ascend_wrapper_py.h
+1
-0
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+11
-0
python/paddle/distributed/fleet/__init__.py
python/paddle/distributed/fleet/__init__.py
+5
-0
python/paddle/distributed/fleet/base/fleet_base.py
python/paddle/distributed/fleet/base/fleet_base.py
+6
-0
python/paddle/distributed/fleet/base/role_maker.py
python/paddle/distributed/fleet/base/role_maker.py
+7
-1
python/paddle/distributed/fleet/launch.py
python/paddle/distributed/fleet/launch.py
+35
-6
python/paddle/distributed/fleet/launch_utils.py
python/paddle/distributed/fleet/launch_utils.py
+53
-24
python/paddle/distributed/fleet/meta_optimizers/ascend/__init__.py
...ddle/distributed/fleet/meta_optimizers/ascend/__init__.py
+0
-0
python/paddle/distributed/fleet/meta_optimizers/ascend/ascend_optimizer.py
...tributed/fleet/meta_optimizers/ascend/ascend_optimizer.py
+27
-34
python/paddle/distributed/fleet/meta_optimizers/ascend/ascend_parser.py
...distributed/fleet/meta_optimizers/ascend/ascend_parser.py
+50
-16
python/paddle/distributed/fleet/meta_optimizers/graph_execution_optimizer.py
...ibuted/fleet/meta_optimizers/graph_execution_optimizer.py
+3
-2
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+2
-0
python/paddle/fluid/tests/unittests/ascend_multi_process_collective.py
.../fluid/tests/unittests/ascend_multi_process_collective.py
+37
-0
python/paddle/fluid/tests/unittests/test_fleet_launch_ascend.sh
.../paddle/fluid/tests/unittests/test_fleet_launch_ascend.sh
+59
-0
python/paddle/fluid/transpiler/ascend_transpiler.py
python/paddle/fluid/transpiler/ascend_transpiler.py
+64
-0
python/setup.py.in
python/setup.py.in
+1
-0
未找到文件。
cmake/external/ascend.cmake
浏览文件 @
f9c97dd7
...
...
@@ -37,13 +37,18 @@ set(ATLAS_ACL_DIR ${ASCEND_DIR}/ascend-toolkit/latest/acllib/lib64)
set
(
ATLAS_ATC_DIR
${
ASCEND_DIR
}
/ascend-toolkit/latest/atc/lib64
)
set
(
ATLAS_MS_RUNTIME_PATH
${
ATLAS_RUNTIME_DIR
}
${
ATLAS_ACL_DIR
}
${
ATLAS_ATC_DIR
}
)
set
(
atlas_graph
${
ATLAS_RUNTIME_DIR
}
/libgraph.so
)
set
(
atlas_ge_runner
${
ATLAS_RUNTIME_DIR
}
/libge_runner.so
)
set
(
atlas_graph_lib
${
ATLAS_RUNTIME_DIR
}
/libgraph.so
)
set
(
atlas_ge_runner_lib
${
ATLAS_RUNTIME_DIR
}
/libge_runner.so
)
set
(
atlas_acl_lib
${
ATLAS_RUNTIME_DIR
}
/libascendcl.so
)
INCLUDE_DIRECTORIES
(
${
ATLAS_RUNTIME_INC_DIR
}
)
ADD_LIBRARY
(
ascend_ge SHARED IMPORTED GLOBAL
)
SET_PROPERTY
(
TARGET ascend_ge PROPERTY IMPORTED_LOCATION
${
atlas_ge_runner
}
)
SET_PROPERTY
(
TARGET ascend_ge PROPERTY IMPORTED_LOCATION
${
atlas_ge_runner
_lib
}
)
ADD_LIBRARY
(
ascend_graph SHARED IMPORTED GLOBAL
)
SET_PROPERTY
(
TARGET ascend_graph PROPERTY IMPORTED_LOCATION
${
atlas_graph
}
)
add_custom_target
(
extern_ascend DEPENDS ascend_ge ascend_graph
)
SET_PROPERTY
(
TARGET ascend_graph PROPERTY IMPORTED_LOCATION
${
atlas_graph_lib
}
)
ADD_LIBRARY
(
atlas_acl SHARED IMPORTED GLOBAL
)
SET_PROPERTY
(
TARGET atlas_acl PROPERTY IMPORTED_LOCATION
${
atlas_acl_lib
}
)
add_custom_target
(
extern_ascend DEPENDS ascend_ge ascend_graph atlas_acl
)
paddle/fluid/memory/allocation/CMakeLists.txt
浏览文件 @
f9c97dd7
...
...
@@ -26,6 +26,8 @@ if (WITH_GPU)
set
(
AllocatorFacadeDeps gpu_info cuda_allocator pinned_allocator cuda_device_guard thread_local_allocator
)
elseif
(
WITH_XPU
)
set
(
AllocatorFacadeDeps xpu_info
)
elseif
(
WITH_ASCEND
)
set
(
AllocatorFacadeDeps ascend_npu_info
)
else
()
set
(
AllocatorFacadeDeps
)
endif
()
...
...
paddle/fluid/operators/collective/CMakeLists.txt
浏览文件 @
f9c97dd7
...
...
@@ -20,6 +20,11 @@ if(WITH_NCCL)
op_library
(
gen_nccl_id_op DEPS
${
COLLECTIVE_DEPS
}
gen_nccl_id_op_helper
)
endif
()
if
(
WITH_ASCEND
)
op_library
(
gen_nccl_id_op
)
endif
()
if
(
WITH_GLOO
)
set
(
COLLECTIVE_DEPS
${
COLLECTIVE_DEPS
}
gloo_wrapper
)
endif
()
...
...
paddle/fluid/operators/collective/gen_nccl_id_op.cc
浏览文件 @
f9c97dd7
...
...
@@ -32,6 +32,8 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
#ifdef PADDLE_WITH_NCCL
class
GenNCCLIdOp
:
public
framework
::
OperatorBase
{
public:
GenNCCLIdOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
...
...
@@ -159,6 +161,21 @@ class GenNCCLIdOp : public framework::OperatorBase {
}
};
#else
class
GenNCCLIdOp
:
public
framework
::
OperatorBase
{
public:
GenNCCLIdOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
}
};
#endif
class
GenNCCLIdOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
...
...
paddle/fluid/platform/CMakeLists.txt
浏览文件 @
f9c97dd7
...
...
@@ -10,6 +10,12 @@ ELSE()
set
(
XPU_CTX_DEPS
)
endif
(
WITH_XPU
)
if
(
WITH_ASCEND
)
set
(
ASCEND_DEPS xpulib
)
ELSE
()
set
(
ASCEND_DEPS
)
endif
(
WITH_ASCEND
)
if
(
WITH_PYTHON
)
py_proto_compile
(
profiler_py_proto SRCS profiler.proto
)
add_custom_target
(
profiler_py_proto_init ALL COMMAND
${
CMAKE_COMMAND
}
-E touch __init__.py
)
...
...
@@ -61,6 +67,10 @@ if(WITH_XPU)
cc_library
(
xpu_info SRCS xpu_info.cc DEPS gflags glog enforce
)
endif
()
if
(
WITH_ASCEND
)
cc_library
(
ascend_npu_info SRCS ascend_npu_info.cc DEPS gflags glog enforce atlas_acl
)
endif
()
add_subdirectory
(
dynload
)
add_subdirectory
(
stream
)
...
...
paddle/fluid/platform/ascend_npu_info.cc
0 → 100644
浏览文件 @
f9c97dd7
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <glog/logging.h>
#include "acl/acl_rt.h"
#include "paddle/fluid/platform/ascend_npu_info.h"
namespace
paddle
{
namespace
platform
{
namespace
ascend
{
int
NPUDevice
::
GetDeviceCount
()
{
uint32_t
count
=
0
;
aclError
status
=
aclrtGetDeviceCount
(
&
count
);
if
(
status
!=
0
){
LOG
(
ERROR
)
<<
"aclrtGetDeviceCount error code:"
<<
status
;
return
-
1
;
}
return
count
;
}
}
// namespace ascend
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/ascend_npu_info.h
0 → 100644
浏览文件 @
f9c97dd7
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#ifdef PADDLE_WITH_ASCEND
namespace
paddle
{
namespace
platform
{
namespace
ascend
{
class
NPUDevice
{
public:
//! Get the total number of XPU devices in system.
static
int
GetDeviceCount
();
};
}
// namespace ascend
}
// namespace platform
}
// namespace paddle
#endif
paddle/fluid/pybind/ascend_wrapper_py.cc
浏览文件 @
f9c97dd7
...
...
@@ -33,6 +33,7 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/framework/fleet/ascend_wrapper.h"
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#include "paddle/fluid/platform/ascend_npu_info.h"
#include "paddle/fluid/platform/enforce.h"
using
namespace
ge
;
// NOLINT
...
...
@@ -96,6 +97,12 @@ enum AttrType {
AT_NAMEATTR
};
void
BindAscendDevice
(
py
::
module
*
m
)
{
py
::
class_
<
platform
::
ascend
::
NPUDevice
>
(
*
m
,
"NPUDevice"
)
.
def_static
(
"get_device_count"
,
static_cast
<
int
(
*
)()
>
(
&
platform
::
ascend
::
NPUDevice
::
GetDeviceCount
));
}
void
BindAscendGraph
(
py
::
module
*
m
)
{
m
->
def
(
"ge_initialize"
,
&
ge_initialize
,
"GEInitialize"
);
m
->
def
(
"ge_finalize"
,
&
GEFinalize
,
"GEFinalize"
);
...
...
@@ -712,6 +719,7 @@ void BindAscendGraph(py::module *m) {
})
.
def_static
(
"is_exist_op"
,
static_cast
<
bool
(
*
)(
const
char
*
)
>
(
&
OperatorFactory
::
IsExistOp
));
}
}
// end namespace pybind
...
...
paddle/fluid/pybind/ascend_wrapper_py.h
浏览文件 @
f9c97dd7
...
...
@@ -25,6 +25,7 @@ namespace pybind {
void
BindAscendGraph
(
py
::
module
*
m
);
void
BindAscendWrapper
(
py
::
module
*
m
);
void
BindAscendDevice
(
py
::
module
*
m
);
}
// namespace pybind
}
// namespace paddle
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
f9c97dd7
...
...
@@ -134,6 +134,14 @@ bool IsCompiledWithCUDA() {
#endif
}
bool
IsCompiledWithAscend
()
{
#ifndef PADDLE_WITH_ASCEND
return
false
;
#else
return
true
;
#endif
}
bool
IsCompiledWithXPU
()
{
#ifndef PADDLE_WITH_XPU
return
false
;
...
...
@@ -1439,6 +1447,7 @@ All parameter, weight, gradient are variables in Paddle.
.
def
(
"__repr__"
,
string
::
to_string
<
const
platform
::
CUDAPlace
&>
)
.
def
(
"__str__"
,
string
::
to_string
<
const
platform
::
CUDAPlace
&>
);
py
::
class_
<
platform
::
XPUPlace
>
(
m
,
"XPUPlace"
,
R"DOC(
**Note**:
Examples:
...
...
@@ -1727,6 +1736,7 @@ All parameter, weight, gradient are variables in Paddle.
m
.
def
(
"init_devices"
,
[]()
{
framework
::
InitDevices
();
});
m
.
def
(
"is_compiled_with_cuda"
,
IsCompiledWithCUDA
);
m
.
def
(
"is_compiled_with_ascend"
,
IsCompiledWithAscend
);
m
.
def
(
"is_compiled_with_xpu"
,
IsCompiledWithXPU
);
m
.
def
(
"is_compiled_with_mkldnn"
,
IsCompiledWithMKLDNN
);
m
.
def
(
"supports_bfloat16"
,
SupportsBfloat16
);
...
...
@@ -2843,6 +2853,7 @@ All parameter, weight, gradient are variables in Paddle.
#ifdef PADDLE_WITH_ASCEND
BindAscendWrapper
(
&
m
);
BindAscendGraph
(
&
m
);
BindAscendDevice
(
&
m
);
#endif
#ifdef PADDLE_WITH_CRYPTO
BindCrypto
(
&
m
);
...
...
python/paddle/distributed/fleet/__init__.py
浏览文件 @
f9c97dd7
...
...
@@ -40,6 +40,11 @@ init = fleet.init
is_first_worker
=
fleet
.
is_first_worker
worker_index
=
fleet
.
worker_index
worker_num
=
fleet
.
worker_num
node_num
=
fleet
.
node_num
rank
=
fleet
.
worker_index
nranks
=
fleet
.
worker_num
world_size
=
fleet
.
worker_num
rank_in_node
=
fleet
.
rank_in_node
is_worker
=
fleet
.
is_worker
worker_endpoints
=
fleet
.
worker_endpoints
server_num
=
fleet
.
server_num
...
...
python/paddle/distributed/fleet/base/fleet_base.py
浏览文件 @
f9c97dd7
...
...
@@ -288,6 +288,12 @@ class Fleet(object):
"""
return
self
.
_role_maker
.
_worker_num
()
def
node_num
(
self
):
return
self
.
_role_maker
.
_get_node_num
()
def
rank_in_node
(
self
):
return
self
.
_role_maker
.
_get_rank_in_node
()
def
is_worker
(
self
):
"""
Check whether the node is an instance of worker.
...
...
python/paddle/distributed/fleet/base/role_maker.py
浏览文件 @
f9c97dd7
...
...
@@ -614,7 +614,7 @@ class PaddleCloudRoleMaker(RoleMakerBase):
return
len
(
self
.
_get_pserver_endpoints
(
))
if
self
.
_get_pserver_endpoints
()
is
not
None
else
0
def
_node_num
(
self
):
def
_
get_
node_num
(
self
):
"""
return the training node number
"""
...
...
@@ -622,6 +622,11 @@ class PaddleCloudRoleMaker(RoleMakerBase):
self
.
_generate_role
()
return
self
.
_nodes_num
def
_get_rank_in_node
(
self
):
if
not
self
.
_role_is_generated
:
self
.
_generate_role
()
return
self
.
_rank_in_node
def
_get_trainer_endpoints
(
self
):
"""
get endpoint of all trainers
...
...
@@ -782,6 +787,7 @@ class PaddleCloudRoleMaker(RoleMakerBase):
self
.
_trainers_num
=
len
(
self
.
_worker_endpoints
)
self
.
_nodes_num
=
len
(
set
([
x
.
split
(
':'
)[
0
]
for
x
in
self
.
_worker_endpoints
]))
self
.
_rank_in_node
=
os
.
getenv
(
"PADDLE_RANK_IN_NODE"
)
def
_gloo_init
(
self
):
# PADDLE_WITH_GLOO 1: trainer barrier, 2: all barrier
...
...
python/paddle/distributed/fleet/launch.py
浏览文件 @
f9c97dd7
...
...
@@ -117,6 +117,23 @@ see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/tra
"--gpus=
\"
0,1,2,3
\"
will launch four training processes each bound to one gpu."
)
base_group
.
add_argument
(
"--run_mode"
,
type
=
str
,
default
=
"collective"
,
help
=
"run mode of job, can be:collective/ps/ps-heter"
)
base_group
.
add_argument
(
"--ascend_npus"
,
type
=
str
,
default
=
None
,
help
=
"It's for ascend npu training."
"For example:"
"--ascend_npus=
\"
0,1,2,3
\"
will launch four training processes each bound to one gpu."
)
base_group
.
add_argument
(
"--selected_gpus"
,
dest
=
"gpus"
)
base_group
.
add_argument
(
...
...
@@ -266,6 +283,16 @@ def launch_ps(args, distribute_mode):
def
which_distributed_mode
(
args
):
if
args
.
run_mode
is
not
None
:
assert
args
.
run_mode
in
[
"collective"
,
"ps"
,
"ps-heter"
]
if
args
.
run_mode
==
"collective"
:
return
DistributeMode
.
COLLECTIVE
elif
args
.
run_mode
==
"ps"
:
return
DistributeMode
.
PS
elif
args
.
run_mode
==
"ps-heter"
:
return
DistributeMode
.
PS_HETER
ps_args
=
[
'--worker_num'
,
'--server_num'
,
'--heter_worker_num'
,
'--servers'
,
'--workers'
,
'--heter_workers'
,
'--http_port'
...
...
@@ -288,22 +315,24 @@ def which_distributed_mode(args):
)
if
fluid
.
core
.
is_compiled_with_cuda
():
cuda_device_num
=
fluid
.
core
.
get_cuda_device_count
()
accelerators
=
fluid
.
core
.
get_cuda_device_count
()
if
fluid
.
core
.
is_compiled_with_ascend
():
accelerators
=
fluid
.
core
.
NPUDevice
.
get_device_count
()
else
:
cuda_device_num
=
0
accelerators
=
0
if
len
(
has_ps_args
)
>
0
:
logger
.
info
(
"Run parameter-sever mode. pserver arguments:{},
cuda
count:{}"
.
format
(
has_ps_args
,
cuda_device_num
))
"Run parameter-sever mode. pserver arguments:{},
accelerators
count:{}"
.
format
(
has_ps_args
,
accelerators
))
has_ps_heter_args
=
list
(
set
(
has_ps_args
)
&
set
(
ps_heter_args
))
if
len
(
has_ps_heter_args
)
>
0
:
return
DistributeMode
.
PS_HETER
else
:
return
DistributeMode
.
PS
elif
len
(
has_collective_args
)
>
0
:
logger
.
info
(
"Run collective
gpu
mode. gpu arguments:{}, cuda count:{}"
.
format
(
has_collective_args
,
cuda_device_num
))
logger
.
info
(
"Run collective mode. gpu arguments:{}, cuda count:{}"
.
format
(
has_collective_args
,
accelerators
))
return
DistributeMode
.
COLLECTIVE
else
:
if
not
fluid
.
core
.
is_compiled_with_cuda
():
...
...
python/paddle/distributed/fleet/launch_utils.py
浏览文件 @
f9c97dd7
...
...
@@ -50,6 +50,7 @@ class DeviceMode():
CPU
=
0
GPU
=
1
KUNLUN
=
2
ASCEND_NPU
=
3
UNKNOWN
=
3
...
...
@@ -131,23 +132,23 @@ class JobServer(object):
class
Trainer
(
object
):
def
__init__
(
self
):
self
.
gpu
s
=
[]
self
.
accelerator
s
=
[]
self
.
endpoint
=
None
self
.
rank
=
None
def
__str__
(
self
):
return
"
gpu:{} endpoint:{} rank:{}"
.
format
(
self
.
gpu
s
,
self
.
endpoint
,
return
"
accelerator:{} endpoint:{} rank:{}"
.
format
(
self
.
accelerator
s
,
self
.
endpoint
,
self
.
rank
)
def
__eq__
(
self
,
t
):
if
len
(
self
.
gpus
)
!=
len
(
t
.
gpu
s
):
if
len
(
self
.
accelerators
)
!=
len
(
t
.
accelerator
s
):
return
False
if
self
.
endpoint
!=
t
.
endpoint
or
\
self
.
rank
!=
t
.
rank
:
return
False
for
a
,
b
in
zip
(
self
.
gpus
,
t
.
gpu
s
):
for
a
,
b
in
zip
(
self
.
accelerators
,
t
.
accelerator
s
):
if
a
!=
b
:
return
False
...
...
@@ -170,12 +171,13 @@ class Pod(object):
self
.
servers
=
[]
self
.
workers
=
[]
self
.
heter_workers
=
[]
self
.
gpus
=
[]
self
.
accelerators
=
[]
self
.
device_mode
=
None
def
__str__
(
self
):
return
"rank:{} id:{} addr:{} port:{} visible_
gpu
:{} trainers:{} servers:{}
\
return
"rank:{} id:{} addr:{} port:{} visible_
accelerator
:{} trainers:{} servers:{}
\
workers:{} heter_workers:{}"
.
format
(
self
.
rank
,
self
.
id
,
self
.
addr
,
self
.
port
,
self
.
gpu
s
,
[
self
.
rank
,
self
.
id
,
self
.
addr
,
self
.
port
,
self
.
accelerator
s
,
[
str
(
t
)
for
t
in
self
.
trainers
],
[
str
(
s
)
for
s
in
self
.
servers
],
[
str
(
w
)
for
w
in
self
.
workers
],
[
str
(
h
)
for
h
in
self
.
heter_workers
])
...
...
@@ -230,12 +232,12 @@ class Pod(object):
def
rank
(
self
):
return
self
.
rank
def
get_visible_
gpu
s
(
self
):
def
get_visible_
accelerator
s
(
self
):
r
=
""
for
g
in
self
.
gpu
s
:
for
g
in
self
.
accelerator
s
:
r
+=
"{},"
.
format
(
g
)
assert
r
!=
""
,
"this pod {} can't see any
gpu
s"
.
format
(
self
)
assert
r
!=
""
,
"this pod {} can't see any
accelerator
s"
.
format
(
self
)
r
=
r
[:
-
1
]
return
r
...
...
@@ -263,18 +265,23 @@ def get_cluster(node_ips, node_ip, trainer_endpoints, device_mode,
pod
=
Pod
()
pod
.
rank
=
node_rank
pod
.
addr
=
ip
pod
.
device_mode
=
device_mode
cur_node_endpoints
=
trainer_endpoints
[
node_rank
]
# when use paddlecloud, endpoints may > devices_per_proc(user_defined)
assert
len
(
cur_node_endpoints
)
>=
len
(
devices_per_proc
),
"current trainer_endpoints size should be greater equal than
selected_gpu
s size."
),
"current trainer_endpoints size should be greater equal than
acclerator
s size."
for
i
in
range
(
len
(
devices_per_proc
)):
trainer
=
Trainer
()
if
device_mode
==
DeviceMode
.
GPU
:
if
device_mode
==
DeviceMode
.
GPU
or
device_mode
==
DeviceMode
.
ASCEND_NPU
:
if
isinstance
(
devices_per_proc
[
i
],
(
list
,
tuple
)):
trainer
.
gpus
.
extend
(
devices_per_proc
[
i
])
trainer
.
accelerators
.
extend
(
devices_per_proc
[
i
])
pod
.
accelerators
.
extend
(
devices_per_proc
[
i
])
else
:
trainer
.
gpus
.
append
(
devices_per_proc
[
i
])
trainer
.
accelerators
.
append
(
devices_per_proc
[
i
])
pod
.
accelerators
.
append
(
devices_per_proc
[
i
])
trainer
.
endpoint
=
"%s"
%
(
cur_node_endpoints
[
i
])
trainer
.
rank
=
trainer_rank
trainer_rank
+=
1
...
...
@@ -451,12 +458,17 @@ def start_local_trainers(cluster,
"PADDLE_TRAINER_ID"
:
"%d"
%
t
.
rank
,
"PADDLE_CURRENT_ENDPOINT"
:
"%s"
%
t
.
endpoint
,
"PADDLE_TRAINERS_NUM"
:
"%d"
%
cluster
.
trainers_nranks
(),
"PADDLE_TRAINER_ENDPOINTS"
:
","
.
join
(
cluster
.
trainers_endpoints
())
"PADDLE_TRAINER_ENDPOINTS"
:
","
.
join
(
cluster
.
trainers_endpoints
()),
"PADDLE_RANK_IN_NODE"
:
str
(
idx
)
}
if
len
(
t
.
gpus
)
>
0
:
if
len
(
t
.
accelerators
)
>
0
and
pod
.
device_mode
==
DeviceMode
.
GPU
:
proc_env
[
"FLAGS_selected_gpus"
]
=
"%s"
%
","
.
join
(
[
str
(
g
)
for
g
in
t
.
gpus
])
[
str
(
g
)
for
g
in
t
.
accelerators
])
if
len
(
t
.
accelerators
)
>
0
:
proc_env
[
"FLAGS_selected_accelerators"
]
=
"%s"
%
","
.
join
(
[
str
(
g
)
for
g
in
t
.
accelerators
])
current_env
.
update
(
proc_env
)
...
...
@@ -555,6 +567,16 @@ def watch_local_trainers(procs, nranks):
return
alive
def
get_ascend_npus
(
npus
):
if
npus
is
None
:
count
=
fluid
.
core
.
NPUDevice
.
get_device_count
()
if
count
<=
0
:
return
ret
ret
=
[
x
for
x
in
range
(
count
)]
else
:
ret
=
[
x
.
strip
()
for
x
in
npus
.
split
(
','
)]
return
ret
def
get_gpus
(
gpus
):
if
gpus
is
None
:
gpus_num
=
fluid
.
core
.
get_cuda_device_count
()
...
...
@@ -585,15 +607,18 @@ def get_gpus(gpus):
def
get_device_mode
():
#TODO(gongwb):Add XPU supported
if
not
fluid
.
core
.
is_compiled_with_cuda
(
)
or
fluid
.
core
.
get_cuda_device_count
()
<=
0
:
print
(
"launch train in CPU mode"
)
return
DeviceMode
.
CPU
if
fluid
.
core
.
is_compiled_with_ascend
()
and
\
fluid
.
core
.
NPUDevice
.
get_device_count
()
>
0
:
print
(
"launch train in ascend npu mode!"
)
return
DeviceMode
.
ASCEND_NPU
print
(
"launch train in GPU mode"
)
return
DeviceMode
.
GPU
if
fluid
.
core
.
is_compiled_with_cuda
()
and
\
fluid
.
core
.
get_cuda_device_count
()
>
0
:
print
(
"launch train in GPU mode!"
)
return
DeviceMode
.
GPU
print
(
"launch train in CPU mode!"
)
return
DeviceMode
.
CPU
def
get_device_proc_info
(
args
):
# device_mode
...
...
@@ -613,6 +638,10 @@ def get_device_proc_info(args):
]
else
:
devices_per_proc
=
gpus
elif
device_mode
==
DeviceMode
.
ASCEND_NPU
:
npus
=
get_ascend_npus
(
args
.
ascend_npus
)
assert
args
.
nproc_per_node
is
None
,
"ascend_npus need't nproc_per_node arguments"
devices_per_proc
=
npus
elif
device_mode
==
DeviceMode
.
CPU
:
if
args
.
nproc_per_node
is
None
:
devices_per_proc
=
[
0
]
...
...
python/paddle/distributed/fleet/meta_optimizers/ascend/__init__.py
0 → 100644
浏览文件 @
f9c97dd7
python/paddle/distributed/fleet/meta_optimizers/ascend/ascend_optimizer.py
浏览文件 @
f9c97dd7
...
...
@@ -16,7 +16,7 @@ import paddle.fluid.framework as framework
from
paddle.fluid.optimizer
import
Optimizer
import
paddle.fluid.core
as
core
import
numpy
as
np
import
ascend_parser
from
.
import
ascend_parser
class
AscendIRParser
(
object
):
...
...
@@ -27,37 +27,25 @@ class AscendIRParser(object):
ret_map
=
{}
ge_in_operator
=
[]
for
id
,
var
in
enumerate
(
input_varlist
):
if
var
.
is_data
:
# input data
ge_input
=
core
.
GEOperatorFactory
.
create_operator
(
var
.
name
,
"Data"
).
set_attr_int32
(
"index"
,
id
)
if
var
.
is_data
:
# input data
ge_input
=
core
.
GEOperatorFactory
.
create_operator
(
var
.
name
,
"Data"
).
set_attr_int32
(
"index"
,
id
)
ret_map
[
var
.
name
]
=
ge_input
ge_in_operator
.
append
(
ge_input
)
else
:
# param, learning ...
ge_input
=
core
.
GEOperatorFactory
.
create_operator
(
var
.
name
,
"Variable"
)
ge_input
.
update_output_desc
(
"y"
,
core
.
GETensorDesc
(
core
.
GEShape
(
var
.
shape
),
core
.
GEFormat
.
FORMAT_ND
,
core
.
GEDataType
.
DT_FLOAT
))
else
:
# param, learning ...
ge_input
=
core
.
GEOperatorFactory
.
create_operator
(
var
.
name
,
"Variable"
)
ge_input
.
update_output_desc
(
"y"
,
core
.
GETensorDesc
(
core
.
GEShape
(
var
.
shape
),
core
.
GEFormat
.
FORMAT_ND
,
core
.
GEDataType
.
DT_FLOAT
))
ret_map
[
var
.
name
]
=
ge_input
return
ge_in_operator
,
ret_map
def
parse_op
(
self
,
op
):
if
op
.
type
in
ascend_parser
.
registerd_op
:
print
(
"Op[%s] has been registered, begin to parse it"
%
(
op
.
type
))
op_parser
=
self
.
parser_factory
.
create_parse
(
ascend_parser
.
registerd_op
[
op
.
type
])
op_parser
=
self
.
parser_factory
.
create_parse
(
ascend_parser
.
registerd_op
[
op
.
type
])
op_parser
.
apply
(
op
)
else
:
print
(
"Op[%s] has not been registered, so we have to skip it"
%
(
op
.
type
))
def
_parse_program
(
self
,
graph_name
,
program
,
input_varlist
=
[],
fetch_list
=
[]):
print
(
"Op[%s] has not been registered, so we have to skip it"
%
(
op
.
type
))
def
_parse_program
(
self
,
graph_name
,
program
,
input_varlist
=
[],
fetch_list
=
[]):
begin_graph_idx
=
self
.
graph_idx
ge_in_operator
=
[]
ge_out_operator
=
[]
...
...
@@ -72,8 +60,7 @@ class AscendIRParser(object):
ge_in_operator
,
self
.
var2geop
=
self
.
_construct_input_map
(
input_varlist
)
self
.
parser_factory
=
ascend_parser
.
AscendParserFactory
(
graph
,
self
.
var2geop
)
self
.
parser_factory
=
ascend_parser
.
AscendParserFactory
(
graph
,
self
.
var2geop
)
for
i
,
curop
in
list
(
enumerate
(
block
.
ops
)):
self
.
parse_op
(
curop
)
...
...
@@ -110,11 +97,9 @@ class AscendIRParser(object):
self
.
graph_idx
+=
1
return
graph
def
parse_program
(
self
,
startup_program
,
main_program
,
input_varlist
,
fetch_list
):
def
parse_program
(
self
,
startup_program
,
main_program
,
input_varlist
,
fetch_list
):
startup_graph
=
self
.
_parse_program
(
"startup"
,
startup_program
)
main_graph
=
self
.
_parse_program
(
"main"
,
main_program
,
input_varlist
,
fetch_list
)
main_graph
=
self
.
_parse_program
(
"main"
,
main_program
,
input_varlist
,
fetch_list
)
return
startup_graph
,
main_graph
...
...
@@ -138,7 +123,7 @@ class AscendOptimizer(Optimizer):
dist_strategy
.
ascend
=
False
dist_strategy
.
ascend_configs
=
{}
def
_get_input_varlist
(
program
):
def
_get_input_varlist
(
self
,
program
):
ret_list
=
[]
for
var
in
program
.
list_vars
():
if
var
.
is_data
or
var
.
persistable
:
...
...
@@ -149,18 +134,26 @@ class AscendOptimizer(Optimizer):
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
minimized
=
self
.
inner_opt
.
minimize
(
loss
,
startup_program
=
startup_program
)
no_grad_set
=
None
,
auto_dp
=
False
):
minimized
=
self
.
inner_opt
.
minimize
(
loss
,
startup_program
=
startup_program
)
self
.
ascend_instance
=
core
.
AscendInstance
()
from
paddle.distributed
import
fleet
if
auto_dp
and
fleet
.
worker_num
()
>
1
:
from
paddle.fluid.transpiler
import
ascend_transpiler
t
=
ascend_transpiler
.
AscendTranspiler
(
startup_program
,
loss
.
block
.
program
)
t
.
transpile
()
print
(
loss
.
block
.
program
)
# Config about Graph Engine can be found in https://support.huaweicloud.com/
config
=
{
"ge.exec.deviceId"
:
"0"
,
"ge.exec.deviceId"
:
str
(
fleet
.
rank_in_node
())
,
"ge.graphRunMode"
:
"1"
,
"ge.exec.precision_mode"
:
"must_keep_origin_dtype"
}
print
(
"ge_initialize config:"
,
config
)
core
.
ge_initialize
(
config
)
# Init Session
...
...
@@ -169,7 +162,7 @@ class AscendOptimizer(Optimizer):
main_block
=
loss
.
block
self
.
parser
=
AscendIRParser
()
input_varlist
=
_get_input_varlist
(
main_block
.
program
)
input_varlist
=
self
.
_get_input_varlist
(
main_block
.
program
)
startup_graph
,
main_graph
=
self
.
parser
.
parse_program
(
startup_program
,
main_block
.
program
,
input_varlist
,
self
.
fetch_list
)
...
...
python/paddle/distributed/fleet/meta_optimizers/ascend/ascend_parser.py
浏览文件 @
f9c97dd7
...
...
@@ -29,6 +29,8 @@ registerd_op = {
"reduce_sum_grad"
:
"ReduceSumGradParser"
,
"matmul_grad"
:
"MatMulGradParser"
,
"mul_grad"
:
"MulGradParser"
,
"reshape2"
:
"ReshapeParser"
,
"scale"
:
"ScaleParser"
,
"relu_grad"
:
"ReluGradParser"
,
"softmax_with_cross_entropy_grad"
:
"SoftmaxWithCrossEntropyGradParser"
,
"truncated_gaussian_random"
:
"TruncatedNormalParser"
,
...
...
@@ -60,13 +62,11 @@ class AscendHelper(object):
}
def
dtype2ge
(
self
,
dtype
):
assert
dtype
in
self
.
dtype2ge_map
,
"dtype[%d] is not supported %d"
%
(
dtype
)
assert
dtype
in
self
.
dtype2ge_map
,
"dtype[%d] is not supported %d"
%
(
dtype
)
return
self
.
dtype2ge_map
[
dtype
]
def
dtype2np
(
self
,
index
):
assert
index
in
self
.
dtype2np_map
,
"index[%d] is not supported %d"
%
(
dtype
)
assert
index
in
self
.
dtype2np_map
,
"index[%d] is not supported %d"
%
(
dtype
)
return
self
.
dtype2np_map
[
index
]
...
...
@@ -91,8 +91,7 @@ class AscendParserBase(object):
self
.
ascend_helper
=
AscendHelper
()
def
_get_ge_input
(
self
,
input_var_name
):
assert
input_var_name
in
self
.
var2geop
,
"var %s not created before"
%
(
input_var_name
)
assert
input_var_name
in
self
.
var2geop
,
"var %s not created before"
%
(
input_var_name
)
return
self
.
var2geop
[
input_var_name
]
def
update_output
(
self
,
geop_list
,
index_list
):
...
...
@@ -113,8 +112,7 @@ class AscendParserBase(object):
for
i
in
range
(
len
(
arguments
)):
print
(
"assgin index_list[%d][%d] to %s"
%
(
output_id
,
i
,
arguments
[
i
]))
self
.
var2geop
[
arguments
[
i
]]
=
geop_list
[
index_list
[
output_id
][
i
]]
self
.
var2geop
[
arguments
[
i
]]
=
geop_list
[
index_list
[
output_id
][
i
]]
for
geop
in
geop_list
:
self
.
graph
.
add_op
(
geop
)
...
...
@@ -478,15 +476,11 @@ class TruncatedNormalParser(AscendParserBase):
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensor3
)
tensor4
=
self
.
_create_ge_tensor
([
1
],
dtype
,
mean
-
2
*
std
)
min_tensor
=
core
.
GEOperatorFactory
.
create_operator
(
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensor4
)
tensor4
=
self
.
_create_ge_tensor
([
1
],
dtype
,
mean
-
2
*
std
)
min_tensor
=
core
.
GEOperatorFactory
.
create_operator
(
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensor4
)
tensor5
=
self
.
_create_ge_tensor
([
1
],
dtype
,
mean
+
2
*
std
)
max_tensor
=
core
.
GEOperatorFactory
.
create_operator
(
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensor5
)
tensor5
=
self
.
_create_ge_tensor
([
1
],
dtype
,
mean
+
2
*
std
)
max_tensor
=
core
.
GEOperatorFactory
.
create_operator
(
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensor5
)
self
.
_mark_as_input
(
shape_tensor
)
self
.
_mark_as_input
(
mean_tensor
)
...
...
@@ -527,3 +521,43 @@ class TruncatedNormalParser(AscendParserBase):
"self.op.output('Out')[0] is not persistable in truncated_noraml"
)
return
[
truncated_normal
],
[[
0
]]
#[assign]
class
ScaleParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
(
ScaleParser
,
self
).
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"scale"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
scale
=
self
.
op
.
attr
(
"scale"
)
#self.get_ge_input(self.op.input_arg_names[1])
bias
=
self
.
op
.
attr
(
"bias"
)
bias_after_scale
=
self
.
op
.
attr
(
"bias_after_scale"
)
if
bias_after_scale
:
scale_value
=
core
.
GEOperatorFactory
.
create_operator
(
"scale"
+
self
.
_accumulated_op_id
(),
"Power"
).
set_input
(
"x"
,
x
).
set_attr_float
(
"power"
,
1.0
).
set_attr_float
(
"scale"
,
scale
).
set_attr_float
(
"shift"
,
bias
)
else
:
x_add_bias
=
core
.
GEOperatorFactory
.
create_operator
(
"adds"
+
self
.
_accumulated_op_id
(),
"Adds"
).
set_input
(
"x"
,
x
).
set_attr_float
(
"value"
,
bias
)
#set_input("x2", bias)
scale_value
=
core
.
GEOperatorFactory
.
create_operator
(
"scale"
+
self
.
_accumulated_op_id
(),
"Power"
).
set_input
(
"x"
,
x_add_bias
).
set_attr_float
(
"power"
,
1.0
).
set_attr_float
(
"scale"
,
scale
).
set_attr_float
(
"shift"
,
0.0
)
#tensor_zeros = core.GEOperatorFactory.create_operator("zeroslike" + self.getid(), "ZerosLike").set_input("x", x)
#bias_ = self.create_ge_tensor([1], 5, bias)
#const_bias = core.GEOperatorFactory.create_operator("const" + self.getid(), "Const").set_attr_tensor("value", tensor_bias)
return
[
scale_value
],[[
0
]]
class
ReshapeParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
(
ReshapeParser
,
self
).
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"reshape2"
def
_apply
(
self
):
print
(
"swbuf:"
,
self
.
op
.
input_arg_names
)
shape
=
self
.
op
.
attr
(
"shape"
)
axis
=
0
if
shape
[
0
]
==
-
1
:
axis
=
1
shape
=
shape
[
1
:]
print
(
"shape: "
,
shape
)
data_x1_shape
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
tensor
=
self
.
_create_ge_tensor
([
len
(
shape
)],
2
,
shape
)
const_shape
=
core
.
GEOperatorFactory
.
create_operator
(
"shape"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensor
)
reshape
=
core
.
GEOperatorFactory
.
create_operator
(
"reshape"
+
self
.
_accumulated_op_id
(),
"Reshape"
).
set_input
(
"x"
,
data_x1_shape
).
set_input
(
"shape"
,
const_shape
).
set_attr_int32
(
"axis"
,
axis
)
return
[
reshape
,
reshape
],
[[
0
],[
1
]]
python/paddle/distributed/fleet/meta_optimizers/graph_execution_optimizer.py
浏览文件 @
f9c97dd7
...
...
@@ -61,8 +61,9 @@ class GraphExecutionOptimizer(MetaOptimizerBase):
trainer_endpoints_env
=
","
.
join
(
trainer_endpoints
)
trainers_num
=
self
.
role_maker
.
_worker_num
()
if
trainer_id
==
0
:
wait_server_ready
(
other_trainers
)
# FIXME(wangxi): approve this.
#if trainer_id == 0:
# wait_server_ready(other_trainers)
nccl_id_var
=
startup_program
.
global_block
().
create_var
(
name
=
"NCCLID"
,
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
f9c97dd7
...
...
@@ -38,6 +38,7 @@ list(APPEND MIXED_DIST_TEST_OPS test_fleetrun)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_run_random_port
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_launch_async
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_launch_cloud
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_launch_ascend
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_launch_nproc
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_api_input
)
list
(
APPEND MIXED_DIST_TEST_OPS test_collective_optimizer
)
...
...
@@ -521,6 +522,7 @@ if(WITH_DISTRIBUTE)
bash_test_modules
(
test_fleet_run_random_port START_BASH test_fleet_run_random_port.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_fleet_launch_async START_BASH test_fleet_launch_async.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_fleet_launch_cloud START_BASH test_fleet_launch_cloud.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_fleet_launch_ascend START_BASH test_fleet_launch_ascend.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_fleet_launch_nproc START_BASH test_fleet_launch_nproc.sh ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
# port range (20000, 23000) is reserved for dist-ops
...
...
python/paddle/fluid/tests/unittests/ascend_multi_process_collective.py
0 → 100644
浏览文件 @
f9c97dd7
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
import
time
def
train
(
prefix
):
selected_accelerators
=
os
.
getenv
(
"FLAGS_selected_accelerators"
)
trainer_id
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
))
worker_endpoints_env
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
)
current_endpoint
=
os
.
getenv
(
"PADDLE_CURRENT_ENDPOINT"
)
worker_endpoints
=
worker_endpoints_env
trainers_num
=
len
(
worker_endpoints
.
split
(
','
))
details
=
"selected_accelerators:{} worker_endpoints:{} trainers_num:{} current_endpoint:{} trainer_id:{}"
\
.
format
(
selected_accelerators
,
worker_endpoints
,
trainers_num
,
current_endpoint
,
trainer_id
)
print
(
details
)
with
open
(
"multi_process_{}.check_{}.log"
.
format
(
prefix
,
trainer_id
),
"w"
)
as
f
:
f
.
write
(
details
)
if
__name__
==
'__main__'
:
prefix
=
sys
.
argv
[
1
]
train
(
prefix
)
python/paddle/fluid/tests/unittests/test_fleet_launch_ascend.sh
0 → 100644
浏览文件 @
f9c97dd7
#!/bin/bash
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
# use paddlecloud
echo
"begin test use paddlecloud"
cluster_node_ips
=
"127.0.0.1,127.0.0.2"
export
PADDLE_TRAINERS_NUM
=
2
export
POD_IP
=
127.0.0.1
export
PADDLE_TRAINERS
=
127.0.0.1,127.0.0.2
export
PADDLE_TRAINER_ID
=
0
export
PADDLE_PORT
=
35789
export
TRAINER_PORTS_NUM
=
2
distributed_args
=
"--ips=
${
cluster_node_ips
}
--ascend_npus=0,1 --log_dir=testlog"
python
-m
paddle.distributed.fleet.launch
${
distributed_args
}
ascend_multi_process_collective.py fleetlaunchascend
str1
=
"selected_accelerators:0 worker_endpoints:127.0.0.1:35789,127.0.0.1:35790,127.0.0.2:35789,127.0.0.2:35790 trainers_num:4 current_endpoint:127.0.0.1:35789 trainer_id:0"
str2
=
"selected_accelerators:1 worker_endpoints:127.0.0.1:35789,127.0.0.1:35790,127.0.0.2:35789,127.0.0.2:35790 trainers_num:4 current_endpoint:127.0.0.1:35790 trainer_id:1"
file_0
=
"multi_process_fleetlaunchascend.check_0.log"
file_1
=
"multi_process_fleetlaunchascend.check_1.log"
echo
"paddlecloud params test"
if
grep
-q
"
$str1
"
"
$file_0
"
;
then
echo
"find trainer 0"
else
echo
"not find trainer 0"
exit
-1
fi
if
grep
-q
"
$str2
"
"
$file_1
"
;
then
echo
"find trainer 1"
else
echo
"not find trainer 1"
exit
-1
fi
# test async poll process
if
[
-f
$file_0
]
;
then
rm
$file_0
fi
if
[
-f
$file_1
]
;
then
rm
$file_1
fi
python/paddle/fluid/transpiler/ascend_transpiler.py
0 → 100644
浏览文件 @
f9c97dd7
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.
import
collective
from
..
import
core
OpRole
=
core
.
op_proto_and_checker_maker
.
OpRole
class
AscendTranspiler
(
collective
.
Collective
):
def
__init__
(
self
,
startup_program
,
main_program
):
self
.
nrings
=
1
super
(
AscendTranspiler
,
self
).
__init__
(
self
.
nrings
)
self
.
_startup_program
=
startup_program
self
.
_main_program
=
main_program
def
_insert_allreduce_ops
(
self
):
block
=
self
.
_main_program
.
global_block
()
ring_id
=
-
1
grad
=
None
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
self
.
_is_backward_op
(
op
)
and
\
self
.
op_role_var_key
in
op
.
attr_names
:
op_role_var
=
op
.
all_attrs
()[
self
.
op_role_var_key
]
if
len
(
op_role_var
)
==
0
:
continue
assert
len
(
op_role_var
)
%
2
==
0
offset
=
idx
for
i
in
range
(
0
,
len
(
op_role_var
),
2
):
param
=
block
.
vars
[
op_role_var
[
i
]]
grad
=
block
.
vars
[
op_role_var
[
i
+
1
]]
if
param
.
is_distributed
:
continue
# As we search ops reversedly, we should insert c_allreduce_sum
# op in the same way to keep the ring_id alternate
ring_id
=
(
ring_id
+
1
)
%
self
.
nrings
block
.
_insert_op
(
offset
+
1
,
type
=
'allreduce'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
grad
},
attrs
=
{
'ring_id'
:
ring_id
,
self
.
op_role_key
:
OpRole
.
Backward
})
if
grad
is
None
:
return
def
transpile
(
self
):
self
.
_insert_allreduce_ops
()
python/setup.py.in
浏览文件 @
f9c97dd7
...
...
@@ -148,6 +148,7 @@ packages=['paddle',
'paddle.distributed.fleet.base',
'paddle.distributed.fleet.meta_optimizers',
'paddle.distributed.fleet.meta_optimizers.sharding',
'paddle.distributed.fleet.meta_optimizers.ascend',
'paddle.distributed.fleet.runtime',
'paddle.distributed.fleet.dataset',
'paddle.distributed.fleet.data_generator',
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录