test_eig_op.py 11.5 KB
Newer Older
L
Lijunhui 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#  Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from op_test import OpTest, skip_check_grad_ci
import unittest


# cast output to complex for numpy.linalg.eig
def cast_to_complex(input, output):
25
    if input.dtype == np.float32:
L
Lijunhui 已提交
26
        output = output.astype(np.complex64)
27
    elif input.dtype == np.float64:
L
Lijunhui 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
        output = output.astype(np.complex128)
    return output


# define eig backward function for a single square matrix
def eig_backward(w, v, grad_w, grad_v):
    v_tran = np.transpose(v)
    v_tran = np.conjugate(v_tran)
    w_conj = np.conjugate(w)
    w_conj_l = w_conj.reshape(1, w.size)
    w_conj_r = w_conj.reshape(w.size, 1)
    w_conj_2d = w_conj_l - w_conj_r

    vhgv = np.matmul(v_tran, grad_v)
    real_vhgv = np.real(vhgv)
    diag_real = real_vhgv.diagonal()

    diag_2d = diag_real.reshape(1, w.size)
    rhs = v * diag_2d
    mid = np.matmul(v_tran, rhs)
    result = vhgv - mid

    res = np.divide(result, w_conj_2d)
    row, col = np.diag_indices_from(res)
    res[row, col] = 1.0

    tmp = np.matmul(res, v_tran)
    dx = np.linalg.solve(v_tran, tmp)
    return dx


class TestEigOp(OpTest):
    def setUp(self):
        paddle.enable_static()
        paddle.device.set_device("cpu")
        self.op_type = "eig"
        self.__class__.op_type = self.op_type
        self.init_input()
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)}
        self.outputs = {'Eigenvalues': self.out[0], 'Eigenvectors': self.out[1]}

    def init_input(self):
        self.set_dtype()
        self.set_dims()
        self.x = np.random.random(self.shape).astype(self.dtype)
        self.out = np.linalg.eig(self.x)
74 75 76 77
        self.out = (
            cast_to_complex(self.x, self.out[0]),
            cast_to_complex(self.x, self.out[1]),
        )
L
Lijunhui 已提交
78 79 80 81 82 83 84 85 86 87

    # for the real input, a customized checker is needed
    def checker(self, outs):
        actual_out_w = outs[0].flatten()
        expect_out_w = self.out[0].flatten()
        actual_out_v = outs[1].flatten()
        expect_out_v = self.out[1].flatten()

        length_w = len(expect_out_w)
        act_w_real = np.sort(
88 89
            np.array([np.abs(actual_out_w[i].real) for i in range(length_w)])
        )
L
Lijunhui 已提交
90
        act_w_imag = np.sort(
91 92
            np.array([np.abs(actual_out_w[i].imag) for i in range(length_w)])
        )
L
Lijunhui 已提交
93
        exp_w_real = np.sort(
94 95
            np.array([np.abs(expect_out_w[i].real) for i in range(length_w)])
        )
L
Lijunhui 已提交
96
        exp_w_imag = np.sort(
97 98
            np.array([np.abs(expect_out_w[i].imag) for i in range(length_w)])
        )
L
Lijunhui 已提交
99 100

        for i in range(length_w):
101 102 103 104 105
            np.testing.assert_allclose(
                act_w_real[i],
                exp_w_real[i],
                rtol=1e-06,
                atol=1e-05,
106 107 108 109 110 111
                err_msg='The eigenvalues real part have diff: \nExpected '
                + str(act_w_real[i])
                + '\n'
                + 'But got: '
                + str(exp_w_real[i]),
            )
112 113 114 115 116
            np.testing.assert_allclose(
                act_w_imag[i],
                exp_w_imag[i],
                rtol=1e-06,
                atol=1e-05,
117 118 119 120 121 122
                err_msg='The eigenvalues image part have diff: \nExpected '
                + str(act_w_imag[i])
                + '\n'
                + 'But got: '
                + str(exp_w_imag[i]),
            )
L
Lijunhui 已提交
123 124 125

        length_v = len(expect_out_v)
        act_v_real = np.sort(
126 127
            np.array([np.abs(actual_out_v[i].real) for i in range(length_v)])
        )
L
Lijunhui 已提交
128
        act_v_imag = np.sort(
129 130
            np.array([np.abs(actual_out_v[i].imag) for i in range(length_v)])
        )
L
Lijunhui 已提交
131
        exp_v_real = np.sort(
132 133
            np.array([np.abs(expect_out_v[i].real) for i in range(length_v)])
        )
L
Lijunhui 已提交
134
        exp_v_imag = np.sort(
135 136
            np.array([np.abs(expect_out_v[i].imag) for i in range(length_v)])
        )
L
Lijunhui 已提交
137 138

        for i in range(length_v):
139 140 141 142 143
            np.testing.assert_allclose(
                act_v_real[i],
                exp_v_real[i],
                rtol=1e-06,
                atol=1e-05,
144 145 146 147 148 149
                err_msg='The eigenvectors real part have diff: \nExpected '
                + str(act_v_real[i])
                + '\n'
                + 'But got: '
                + str(exp_v_real[i]),
            )
150 151 152 153 154
            np.testing.assert_allclose(
                act_v_imag[i],
                exp_v_imag[i],
                rtol=1e-06,
                atol=1e-05,
155 156 157 158 159 160
                err_msg='The eigenvectors image part have diff: \nExpected '
                + str(act_v_imag[i])
                + '\n'
                + 'But got: '
                + str(exp_v_imag[i]),
            )
L
Lijunhui 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

    def set_dtype(self):
        self.dtype = np.complex64

    def set_dims(self):
        self.shape = (10, 10)

    def init_grad(self):
        # grad_w, grad_v complex dtype
        gtype = self.dtype
        if self.dtype == np.float32:
            gtype = np.complex64
        elif self.dtype == np.float64:
            gtype = np.complex128
        self.grad_w = np.ones(self.out[0].shape, gtype)
        self.grad_v = np.ones(self.out[1].shape, gtype)
177 178 179
        self.grad_x = eig_backward(
            self.out[0], self.out[1], self.grad_w, self.grad_v
        )
L
Lijunhui 已提交
180 181

    def test_check_output(self):
182 183 184
        self.check_output_with_place_customized(
            checker=self.checker, place=core.CPUPlace()
        )
L
Lijunhui 已提交
185 186 187

    def test_check_grad(self):
        self.init_grad()
188 189 190 191 192 193
        self.check_grad(
            ['X'],
            ['Eigenvalues', 'Eigenvectors'],
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_w, self.grad_v],
        )
L
Lijunhui 已提交
194 195 196 197 198 199 200 201


class TestComplex128(TestEigOp):
    def set_dtype(self):
        self.dtype = np.complex128


@skip_check_grad_ci(
202
    reason="For float dtype, numpy.linalg.eig forward outputs real or complex when input is real, therefore the grad computation may be not the same with paddle.linalg.eig"
L
Lijunhui 已提交
203 204 205 206 207 208 209 210 211 212
)
class TestDouble(TestEigOp):
    def set_dtype(self):
        self.dtype = np.float64

    def test_check_grad(self):
        pass


@skip_check_grad_ci(
213
    reason="For float dtype, numpy.linalg.eig forward outputs real or complex when input is real, therefore the grad computation may be not the same with paddle.linalg.eig"
L
Lijunhui 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226
)
class TestEigBatchMarices(TestEigOp):
    def set_dtype(self):
        self.dtype = np.float64

    def set_dims(self):
        self.shape = (3, 10, 10)

    def test_check_grad(self):
        pass


@skip_check_grad_ci(
227
    reason="For float dtype, numpy.linalg.eig forward outputs real or complex when input is real, therefore the grad computation may be not the same with paddle.linalg.eig"
L
Lijunhui 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
)
class TestFloat(TestEigOp):
    def set_dtype(self):
        self.dtype = np.float32

    def test_check_grad(self):
        pass


class TestEigStatic(TestEigOp):
    def test_check_output_with_place(self):
        paddle.enable_static()
        place = core.CPUPlace()
        input_np = np.random.random([3, 3]).astype('complex')
        expect_val, expect_vec = np.linalg.eig(input_np)
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[3, 3], dtype='complex')
            act_val, act_vec = paddle.linalg.eig(input)

            exe = fluid.Executor(place)
248 249 250 251 252
            fetch_val, fetch_vec = exe.run(
                fluid.default_main_program(),
                feed={"input": input_np},
                fetch_list=[act_val, act_vec],
            )
253 254 255 256 257
        np.testing.assert_allclose(
            expect_val,
            fetch_val,
            rtol=1e-06,
            atol=1e-06,
258 259 260 261 262 263
            err_msg='The eigen values have diff: \nExpected '
            + str(expect_val)
            + '\n'
            + 'But got: '
            + str(fetch_val),
        )
264 265 266 267 268
        np.testing.assert_allclose(
            np.abs(expect_vec),
            np.abs(fetch_vec),
            rtol=1e-06,
            atol=1e-06,
269 270 271 272 273 274
            err_msg='The eigen vectors have diff: \nExpected '
            + str(np.abs(expect_vec))
            + '\n'
            + 'But got: '
            + str(np.abs(fetch_vec)),
        )
L
Lijunhui 已提交
275 276


277 278 279 280 281 282 283 284 285 286 287
class TestEigDyGraph(unittest.TestCase):
    def test_check_output_with_place(self):
        input_np = np.random.random([3, 3]).astype('complex')
        expect_val, expect_vec = np.linalg.eig(input_np)

        paddle.set_device("cpu")
        paddle.disable_static()

        input_tensor = paddle.to_tensor(input_np)
        fetch_val, fetch_vec = paddle.linalg.eig(input_tensor)

288 289 290 291 292
        np.testing.assert_allclose(
            expect_val,
            fetch_val.numpy(),
            rtol=1e-06,
            atol=1e-06,
293 294 295 296 297 298
            err_msg='The eigen values have diff: \nExpected '
            + str(expect_val)
            + '\n'
            + 'But got: '
            + str(fetch_val),
        )
299 300 301 302 303
        np.testing.assert_allclose(
            np.abs(expect_vec),
            np.abs(fetch_vec.numpy()),
            rtol=1e-06,
            atol=1e-06,
304 305 306 307 308 309
            err_msg='The eigen vectors have diff: \nExpected '
            + str(np.abs(expect_vec))
            + '\n'
            + 'But got: '
            + str(np.abs(fetch_vec.numpy())),
        )
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328

    def test_check_grad(self):
        test_shape = [3, 3]
        test_type = 'float64'
        paddle.set_device("cpu")

        input_np = np.random.random(test_shape).astype(test_type)
        real_w, real_v = np.linalg.eig(input_np)

        grad_w = np.ones(real_w.shape, test_type)
        grad_v = np.ones(real_v.shape, test_type)
        grad_x = eig_backward(real_w, real_v, grad_w, grad_v)

        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(input_np)
            x.stop_gradient = False
            w, v = paddle.linalg.eig(x)
            (w.sum() + v.sum()).backward()

329 330 331 332 333 334 335 336 337 338 339
        np.testing.assert_allclose(
            np.abs(x.grad.numpy()),
            np.abs(grad_x),
            rtol=1e-05,
            atol=1e-05,
            err_msg='The grad x have diff: \nExpected '
            + str(np.abs(grad_x))
            + '\n'
            + 'But got: '
            + str(np.abs(x.grad.numpy())),
        )
340 341


L
Lijunhui 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
class TestEigWrongDimsError(unittest.TestCase):
    def test_error(self):
        paddle.device.set_device("cpu")
        paddle.disable_static()
        a = np.random.random((3)).astype('float32')
        x = paddle.to_tensor(a)
        self.assertRaises(ValueError, paddle.linalg.eig, x)


class TestEigNotSquareError(unittest.TestCase):
    def test_error(self):
        paddle.device.set_device("cpu")
        paddle.disable_static()
        a = np.random.random((1, 2, 3)).astype('float32')
        x = paddle.to_tensor(a)
        self.assertRaises(ValueError, paddle.linalg.eig, x)


class TestEigUnsupportedDtypeError(unittest.TestCase):
    def test_error(self):
        paddle.device.set_device("cpu")
        paddle.disable_static()
        a = (np.random.random((3, 3)) * 10).astype('int64')
        x = paddle.to_tensor(a)
366
        self.assertRaises(RuntimeError, paddle.linalg.eig, x)
L
Lijunhui 已提交
367 368 369 370


if __name__ == "__main__":
    unittest.main()