test_eig_op.py 11.1 KB
Newer Older
L
Lijunhui 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
#  Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from op_test import OpTest, skip_check_grad_ci
import unittest


# cast output to complex for numpy.linalg.eig
def cast_to_complex(input, output):
    if (input.dtype == np.float32):
        output = output.astype(np.complex64)
    elif (input.dtype == np.float64):
        output = output.astype(np.complex128)
    return output


# define eig backward function for a single square matrix
def eig_backward(w, v, grad_w, grad_v):
    v_tran = np.transpose(v)
    v_tran = np.conjugate(v_tran)
    w_conj = np.conjugate(w)
    w_conj_l = w_conj.reshape(1, w.size)
    w_conj_r = w_conj.reshape(w.size, 1)
    w_conj_2d = w_conj_l - w_conj_r

    vhgv = np.matmul(v_tran, grad_v)
    real_vhgv = np.real(vhgv)
    diag_real = real_vhgv.diagonal()

    diag_2d = diag_real.reshape(1, w.size)
    rhs = v * diag_2d
    mid = np.matmul(v_tran, rhs)
    result = vhgv - mid

    res = np.divide(result, w_conj_2d)
    row, col = np.diag_indices_from(res)
    res[row, col] = 1.0

    tmp = np.matmul(res, v_tran)
    dx = np.linalg.solve(v_tran, tmp)
    return dx


class TestEigOp(OpTest):
60

L
Lijunhui 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    def setUp(self):
        paddle.enable_static()
        paddle.device.set_device("cpu")
        self.op_type = "eig"
        self.__class__.op_type = self.op_type
        self.init_input()
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)}
        self.outputs = {'Eigenvalues': self.out[0], 'Eigenvectors': self.out[1]}

    def init_input(self):
        self.set_dtype()
        self.set_dims()
        self.x = np.random.random(self.shape).astype(self.dtype)
        self.out = np.linalg.eig(self.x)
        self.out = (cast_to_complex(self.x, self.out[0]),
                    cast_to_complex(self.x, self.out[1]))

    # for the real input, a customized checker is needed
    def checker(self, outs):
        actual_out_w = outs[0].flatten()
        expect_out_w = self.out[0].flatten()
        actual_out_v = outs[1].flatten()
        expect_out_v = self.out[1].flatten()

        length_w = len(expect_out_w)
        act_w_real = np.sort(
            np.array([np.abs(actual_out_w[i].real) for i in range(length_w)]))
        act_w_imag = np.sort(
            np.array([np.abs(actual_out_w[i].imag) for i in range(length_w)]))
        exp_w_real = np.sort(
            np.array([np.abs(expect_out_w[i].real) for i in range(length_w)]))
        exp_w_imag = np.sort(
            np.array([np.abs(expect_out_w[i].imag) for i in range(length_w)]))

        for i in range(length_w):
96 97 98 99 100 101 102 103 104 105 106 107 108 109
            np.testing.assert_allclose(
                act_w_real[i],
                exp_w_real[i],
                rtol=1e-06,
                atol=1e-05,
                err_msg='The eigenvalues real part have diff: \nExpected ' +
                str(act_w_real[i]) + '\n' + 'But got: ' + str(exp_w_real[i]))
            np.testing.assert_allclose(
                act_w_imag[i],
                exp_w_imag[i],
                rtol=1e-06,
                atol=1e-05,
                err_msg='The eigenvalues image part have diff: \nExpected ' +
                str(act_w_imag[i]) + '\n' + 'But got: ' + str(exp_w_imag[i]))
L
Lijunhui 已提交
110 111 112 113 114 115 116 117 118 119 120 121

        length_v = len(expect_out_v)
        act_v_real = np.sort(
            np.array([np.abs(actual_out_v[i].real) for i in range(length_v)]))
        act_v_imag = np.sort(
            np.array([np.abs(actual_out_v[i].imag) for i in range(length_v)]))
        exp_v_real = np.sort(
            np.array([np.abs(expect_out_v[i].real) for i in range(length_v)]))
        exp_v_imag = np.sort(
            np.array([np.abs(expect_out_v[i].imag) for i in range(length_v)]))

        for i in range(length_v):
122 123 124 125 126 127 128 129 130 131 132 133 134 135
            np.testing.assert_allclose(
                act_v_real[i],
                exp_v_real[i],
                rtol=1e-06,
                atol=1e-05,
                err_msg='The eigenvectors real part have diff: \nExpected ' +
                str(act_v_real[i]) + '\n' + 'But got: ' + str(exp_v_real[i]))
            np.testing.assert_allclose(
                act_v_imag[i],
                exp_v_imag[i],
                rtol=1e-06,
                atol=1e-05,
                err_msg='The eigenvectors image part have diff: \nExpected ' +
                str(act_v_imag[i]) + '\n' + 'But got: ' + str(exp_v_imag[i]))
L
Lijunhui 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

    def set_dtype(self):
        self.dtype = np.complex64

    def set_dims(self):
        self.shape = (10, 10)

    def init_grad(self):
        # grad_w, grad_v complex dtype
        gtype = self.dtype
        if self.dtype == np.float32:
            gtype = np.complex64
        elif self.dtype == np.float64:
            gtype = np.complex128
        self.grad_w = np.ones(self.out[0].shape, gtype)
        self.grad_v = np.ones(self.out[1].shape, gtype)
        self.grad_x = eig_backward(self.out[0], self.out[1], self.grad_w,
                                   self.grad_v)

    def test_check_output(self):
156 157
        self.check_output_with_place_customized(checker=self.checker,
                                                place=core.CPUPlace())
L
Lijunhui 已提交
158 159 160

    def test_check_grad(self):
        self.init_grad()
161 162 163
        self.check_grad(['X'], ['Eigenvalues', 'Eigenvectors'],
                        user_defined_grads=[self.grad_x],
                        user_defined_grad_outputs=[self.grad_w, self.grad_v])
L
Lijunhui 已提交
164 165 166


class TestComplex128(TestEigOp):
167

L
Lijunhui 已提交
168 169 170 171 172
    def set_dtype(self):
        self.dtype = np.complex128


@skip_check_grad_ci(
173 174
    reason=
    "For float dtype, numpy.linalg.eig forward outputs real or complex when input is real, therefore the grad computation may be not the same with paddle.linalg.eig"
L
Lijunhui 已提交
175 176
)
class TestDouble(TestEigOp):
177

L
Lijunhui 已提交
178 179 180 181 182 183 184 185
    def set_dtype(self):
        self.dtype = np.float64

    def test_check_grad(self):
        pass


@skip_check_grad_ci(
186 187
    reason=
    "For float dtype, numpy.linalg.eig forward outputs real or complex when input is real, therefore the grad computation may be not the same with paddle.linalg.eig"
L
Lijunhui 已提交
188 189
)
class TestEigBatchMarices(TestEigOp):
190

L
Lijunhui 已提交
191 192 193 194 195 196 197 198 199 200 201
    def set_dtype(self):
        self.dtype = np.float64

    def set_dims(self):
        self.shape = (3, 10, 10)

    def test_check_grad(self):
        pass


@skip_check_grad_ci(
202 203
    reason=
    "For float dtype, numpy.linalg.eig forward outputs real or complex when input is real, therefore the grad computation may be not the same with paddle.linalg.eig"
L
Lijunhui 已提交
204 205
)
class TestFloat(TestEigOp):
206

L
Lijunhui 已提交
207 208 209 210 211 212 213 214
    def set_dtype(self):
        self.dtype = np.float32

    def test_check_grad(self):
        pass


class TestEigStatic(TestEigOp):
215

L
Lijunhui 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228
    def test_check_output_with_place(self):
        paddle.enable_static()
        place = core.CPUPlace()
        input_np = np.random.random([3, 3]).astype('complex')
        expect_val, expect_vec = np.linalg.eig(input_np)
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[3, 3], dtype='complex')
            act_val, act_vec = paddle.linalg.eig(input)

            exe = fluid.Executor(place)
            fetch_val, fetch_vec = exe.run(fluid.default_main_program(),
                                           feed={"input": input_np},
                                           fetch_list=[act_val, act_vec])
229 230 231 232 233 234 235 236 237 238 239 240 241 242
        np.testing.assert_allclose(
            expect_val,
            fetch_val,
            rtol=1e-06,
            atol=1e-06,
            err_msg='The eigen values have diff: \nExpected ' +
            str(expect_val) + '\n' + 'But got: ' + str(fetch_val))
        np.testing.assert_allclose(
            np.abs(expect_vec),
            np.abs(fetch_vec),
            rtol=1e-06,
            atol=1e-06,
            err_msg='The eigen vectors have diff: \nExpected ' +
            str(np.abs(expect_vec)) + '\n' + 'But got: ' +
L
Lijunhui 已提交
243 244 245
            str(np.abs(fetch_vec)))


246 247 248 249 250 251 252 253 254 255 256 257
class TestEigDyGraph(unittest.TestCase):

    def test_check_output_with_place(self):
        input_np = np.random.random([3, 3]).astype('complex')
        expect_val, expect_vec = np.linalg.eig(input_np)

        paddle.set_device("cpu")
        paddle.disable_static()

        input_tensor = paddle.to_tensor(input_np)
        fetch_val, fetch_vec = paddle.linalg.eig(input_tensor)

258 259 260 261 262 263 264 265 266 267 268 269 270 271
        np.testing.assert_allclose(
            expect_val,
            fetch_val.numpy(),
            rtol=1e-06,
            atol=1e-06,
            err_msg='The eigen values have diff: \nExpected ' +
            str(expect_val) + '\n' + 'But got: ' + str(fetch_val))
        np.testing.assert_allclose(
            np.abs(expect_vec),
            np.abs(fetch_vec.numpy()),
            rtol=1e-06,
            atol=1e-06,
            err_msg='The eigen vectors have diff: \nExpected ' +
            str(np.abs(expect_vec)) + '\n' + 'But got: ' +
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
            str(np.abs(fetch_vec.numpy())))

    def test_check_grad(self):
        test_shape = [3, 3]
        test_type = 'float64'
        paddle.set_device("cpu")

        input_np = np.random.random(test_shape).astype(test_type)
        real_w, real_v = np.linalg.eig(input_np)

        grad_w = np.ones(real_w.shape, test_type)
        grad_v = np.ones(real_v.shape, test_type)
        grad_x = eig_backward(real_w, real_v, grad_w, grad_v)

        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(input_np)
            x.stop_gradient = False
            w, v = paddle.linalg.eig(x)
            (w.sum() + v.sum()).backward()

292 293 294 295 296 297 298
        np.testing.assert_allclose(np.abs(x.grad.numpy()),
                                   np.abs(grad_x),
                                   rtol=1e-05,
                                   atol=1e-05,
                                   err_msg='The grad x have diff: \nExpected ' +
                                   str(np.abs(grad_x)) + '\n' + 'But got: ' +
                                   str(np.abs(x.grad.numpy())))
299 300


L
Lijunhui 已提交
301
class TestEigWrongDimsError(unittest.TestCase):
302

L
Lijunhui 已提交
303 304 305 306 307 308 309 310 311
    def test_error(self):
        paddle.device.set_device("cpu")
        paddle.disable_static()
        a = np.random.random((3)).astype('float32')
        x = paddle.to_tensor(a)
        self.assertRaises(ValueError, paddle.linalg.eig, x)


class TestEigNotSquareError(unittest.TestCase):
312

L
Lijunhui 已提交
313 314 315 316 317 318 319 320 321
    def test_error(self):
        paddle.device.set_device("cpu")
        paddle.disable_static()
        a = np.random.random((1, 2, 3)).astype('float32')
        x = paddle.to_tensor(a)
        self.assertRaises(ValueError, paddle.linalg.eig, x)


class TestEigUnsupportedDtypeError(unittest.TestCase):
322

L
Lijunhui 已提交
323 324 325 326 327
    def test_error(self):
        paddle.device.set_device("cpu")
        paddle.disable_static()
        a = (np.random.random((3, 3)) * 10).astype('int64')
        x = paddle.to_tensor(a)
328
        self.assertRaises(RuntimeError, paddle.linalg.eig, x)
L
Lijunhui 已提交
329 330 331 332


if __name__ == "__main__":
    unittest.main()