fc_mkldnn_op.cc 24.2 KB
Newer Older
M
mozga-intel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <memory>
W
wanghuancoder 已提交
16

17
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/operators/fc_op.h"
M
mozga-intel 已提交
19
#include "paddle/fluid/platform/mkldnn_helper.h"
20
#include "paddle/fluid/platform/profiler/event_tracing.h"
21
#include "paddle/phi/backends/onednn/onednn_reuse.h"
22

M
mozga-intel 已提交
23 24 25
namespace paddle {
namespace operators {

26 27 28 29 30
using dnnl::inner_product_forward;
using dnnl::memory;
using dnnl::primitive;
using dnnl::prop_kind;
using dnnl::stream;
31 32
using framework::DDim;
using framework::ExecutionContext;
33
using phi::OneDNNContext;
34 35
using phi::funcs::OneDNNGetDataType;
using phi::funcs::to_void_cast;
36

37 38 39 40 41 42 43
struct InnerProductCache {
  dnnl::inner_product_forward inner_product_p;
  dnnl::memory src_mem;
  dnnl::memory weights_mem;
  dnnl::memory bias_mem;
  dnnl::memory dst_mem;
};
M
Michał Gallus 已提交
44
template <typename T_in, typename T_w, typename T_out>
45
class FCMKLDNNHandler
46 47
    : public phi::funcs::OneDNNHandlerNoCachingT<T_in,
                                                 dnnl::inner_product_forward> {
M
mozga-intel 已提交
48
 public:
49
  FCMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
50
                  const OneDNNContext& dev_ctx,
51 52 53 54
                  const phi::DenseTensor* x,
                  const phi::DenseTensor* weights,
                  const phi::DenseTensor* bias,
                  phi::DenseTensor* out,
55
                  const int in_num_col_dims,
56
                  dnnl::engine onednn_engine,
57
                  platform::Place cpu_place)
58
      : phi::funcs::OneDNNHandlerNoCachingT<T_in, dnnl::inner_product_forward>(
59
            onednn_engine, cpu_place),
60 61 62 63 64 65 66 67 68
        dev_ctx_(dev_ctx) {
    this->memory_key_ = ctx.InputName("W");

    auto x_vec_dims = phi::vectorize(x->dims());
    auto weights_vec_dims = phi::vectorize(weights->dims());

    int MB = 1;
    for (int i = 0; i < in_num_col_dims; ++i) {
      MB *= x_vec_dims[i];
69 70
    }

71 72 73
    int IC = 1;
    for (size_t i = in_num_col_dims; i < x_vec_dims.size(); ++i) {
      IC *= x_vec_dims[i];
74
    }
75

76
    int OC = weights_vec_dims[1];
M
mozga-intel 已提交
77

78
    dnnl::memory::desc bias_md;
79

80
    auto src_md = dnnl::memory::desc(
81
        {MB, IC}, OneDNNGetDataType<T_in>(), dnnl::memory::format_tag::any);
82
    auto weights_md = dnnl::memory::desc(
83
        {OC, IC}, OneDNNGetDataType<T_w>(), dnnl::memory::format_tag::any);
84
    auto dst_md = dnnl::memory::desc(
85
        {MB, OC}, OneDNNGetDataType<T_out>(), dnnl::memory::format_tag::any);
86 87
    if (bias) {
      bias_md = dnnl::memory::desc({bias->numel()},
88
                                   OneDNNGetDataType<float>(),
89 90
                                   dnnl::memory::format_tag::a);
    }
91

92
    const auto attrs = CreateFCAttrs(ctx);
A
Adam 已提交
93

94 95 96 97 98 99
    this->AcquireForwardPrimitiveDescriptor(attrs,
                                            prop_kind::forward_inference,
                                            src_md,
                                            weights_md,
                                            bias_md,
                                            dst_md);
M
mozga-intel 已提交
100 101
  }

102
 private:
103 104 105
  dnnl::primitive_attr CreateFCAttrs(const ExecutionContext& ctx) {
    dnnl::primitive_attr attributes;
    dnnl::post_ops post_operations;
106

107 108
    float sum_scale = 1.0f;
    float activation_scale = 1.0f;
109
    if (phi::funcs::is_int8<T_w>()) {
110 111 112
      std::vector<float> output_shift_scale;
      std::tie(output_shift_scale, sum_scale, activation_scale) =
          GetOutputScales(ctx);
113
      int mask = CreateMask(1, output_shift_scale.size() > 1);
114
      attributes.set_output_scales(mask, output_shift_scale);
115
    }
116

117 118
    if (ctx.HasAttr("fuse_residual_connection") &&
        ctx.Attr<bool>("fuse_residual_connection")) {
119
      post_operations.append_sum(sum_scale);
120
    }
M
mozga-intel 已提交
121

122 123 124
    // ReLU from "fc_fuse_pass"
    if (ctx.Attr<std::string>("activation_type") == "relu") {
      post_operations.append_eltwise(
125
          activation_scale, dnnl::algorithm::eltwise_relu, 0.0f, 0.0f);
126
    }
127
    AppendActivation(ctx, post_operations, activation_scale);
128

129 130 131 132 133 134
    if (ctx.HasAttr("fused_output_scale")) {
      float scale_alpha = ctx.Attr<float>("fused_output_scale");
      post_operations.append_eltwise(
          1.0, dnnl::algorithm::eltwise_linear, scale_alpha, 0.0f);
    }

135 136
    attributes.set_post_ops(post_operations);
    return attributes;
137 138
  }

M
Michał Gallus 已提交
139 140
  // Compute the bias scales so that its values correspond to the
  // scale of data being an output of weights and input multiplication
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
  std::vector<float> GetBiasScales(const framework::ExecutionContext& ctx) {
    if (ctx.HasAttr("Bias_scales")) {
      return ctx.Attr<std::vector<float>>("Bias_scales");
    } else {
      const float scale_in = ctx.Attr<float>("Scale_in");
      const auto& scale_weights = ctx.Attr<std::vector<float>>("Scale_weights");
      std::vector<float> bias_scales(scale_weights.size());

      for (size_t i = 0; i < bias_scales.size(); ++i) {
        if (scale_weights[i] == 0.0)
          bias_scales[i] = 1.0f;
        else
          bias_scales[i] = scale_in * scale_weights[i];
      }
      return bias_scales;
M
Michał Gallus 已提交
156 157 158
    }
  }

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
  void AppendActivation(const ExecutionContext& ctx,
                        dnnl::post_ops& post_ops,  // NOLINT
                        float activation_scale = 1.0f) {
    const auto invalid_attribute =
        ctx.HasAttr("fuse_activation")
            ? ctx.Attr<std::string>("fuse_activation").empty()
            : true;
    if (invalid_attribute) return;

    const auto fuse_activation = ctx.Attr<std::string>("fuse_activation");
    const auto fuse_alpha =
        ctx.HasAttr("fuse_alpha") ? ctx.Attr<float>("fuse_alpha") : 0.0f;
    const auto fuse_beta =
        ctx.HasAttr("fuse_beta") ? ctx.Attr<float>("fuse_beta") : 0.0f;

174 175 176 177 178 179 180 181 182 183 184 185
    const auto activation_map = phi::funcs::OneDNNActivationMap();
    const auto& activation_type = activation_map.find(fuse_activation);

    PADDLE_ENFORCE_NE(
        activation_type,
        activation_map.end(),
        phi::errors::InvalidArgument(
            "Activation '%s' not found in oneDNN algorithms mapper",
            fuse_activation));

    post_ops.append_eltwise(
        activation_scale, activation_type->second, fuse_alpha, fuse_beta);
186 187
  }

M
Michał Gallus 已提交
188 189 190 191 192
  // Correct output scale, to take into account scaling of input and weights
  // Since the data that comes out of input and weight multiplication is
  // scaled with its own scales, this data needs to be divided by
  // those scales to normalise them back to what their floating-point range
  // was. Then we multiply them by desired output scale we want on the output.
193
  std::tuple<std::vector<float>, float, float> GetOutputScales(
194
      const ExecutionContext& ctx) {
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    if (ctx.HasAttr("Sum_scale")) {
      return std::make_tuple(ctx.Attr<std::vector<float>>("Output_shift_scale"),
                             ctx.Attr<float>("Sum_scale"),
                             ctx.Attr<float>("Activation_scale"));
    } else {
      auto scale_in_data = ctx.Attr<float>("Scale_in");
      auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
      bool has_activation = !ctx.Attr<std::string>("activation_type").empty();
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
      bool fuse_residual_conn = ctx.HasAttr("fuse_residual_connection") &&
                                ctx.Attr<bool>("fuse_residual_connection");
      auto scale_in_eltwise_data = ctx.HasAttr("Scale_in_eltwise")
                                       ? ctx.Attr<float>("Scale_in_eltwise")
                                       : 1.0f;

      // If the output will be in floats, we don't multiply by scale_out.

      float activation_scale = (!force_fp32_output && has_activation)
                                   ? ctx.Attr<float>("Scale_out")
                                   : 1.0f;
      float scale_out_data = (force_fp32_output || has_activation)
                                 ? 1.0f
                                 : ctx.Attr<float>("Scale_out");
      float sum_scale =
          fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
      const size_t weight_scales_num = scale_weights_data.size();

      for (size_t i = 0; i < weight_scales_num; ++i) {
        if (scale_weights_data[i] == 0.0)
          scale_weights_data[i] = scale_out_data;
        else
          scale_weights_data[i] =
              scale_out_data / (scale_in_data * scale_weights_data[i]);
      }
      return std::make_tuple(scale_weights_data, sum_scale, activation_scale);
M
Michał Gallus 已提交
230 231 232 233 234 235 236 237 238 239 240
    }
  }

  // Computing MKL-DNN's scaling mask which determines along which dimension
  // slice should the scaling be applied. For more data plase refer to:
  // https://intel.github.io/mkl-dnn/group__c__api__attributes.html
  // Section dnnl_status_t DNNL_API dnnl_primitive_attr_set_output_scales
  int CreateMask(int slice_dimension, bool is_multi_channel_quantizied) {
    return is_multi_channel_quantizied ? 1 << slice_dimension : 0;
  }

241 242 243 244 245 246
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorderAndAttrs(
      const dnnl::memory::desc& user_md,
      const dnnl::memory::desc& target_md,
      void* ptr,
      const dnnl::primitive_attr& attrs) {
    std::shared_ptr<dnnl::memory> target_memory_p;
M
Michał Gallus 已提交
247

248 249 250 251 252
    auto user_memory_p =
        std::make_shared<dnnl::memory>(user_md, this->engine_, ptr);
    target_memory_p = std::make_shared<dnnl::memory>(target_md, this->engine_);
    auto reorder_p = std::make_shared<dnnl::reorder>(
        *user_memory_p, *target_memory_p, attrs);
M
Michał Gallus 已提交
253

254
    auto& astream = OneDNNContext::tls().get_stream();
255 256 257 258 259 260 261 262 263 264 265
    {
      platform::RecordEvent record_reorder(
          "int_reorder",
          platform::TracerEventType::UserDefined,
          1,
          platform::EventRole::kUniqueOp);
      reorder_p->execute(
          astream,
          {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
      astream.wait();
    }
M
Michał Gallus 已提交
266

267 268
    return target_memory_p;
  }
269

270
  std::string memory_key_;
271
  const OneDNNContext& dev_ctx_;
M
Michał Gallus 已提交
272

273
 public:
274 275
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorder(
      const phi::DenseTensor* x) {
276 277 278 279 280 281 282
    const T_in* x_data = x->data<T_in>();

    auto user_md = x->mem_desc();
    if (x->dims().size() != 2) {
      // reshape restrictions are always satisfied because in case of 3 or 4 dim
      // input, plain layout is enforced
      user_md = user_md.reshape(this->fwd_pd_->src_desc().dims());
M
Michał Gallus 已提交
283 284
    }

285 286
    return this->AcquireMemoryWithReorder(
        user_md, this->fwd_pd_->src_desc(), to_void_cast<T_in>(x_data));
287
  }
M
mozga-intel 已提交
288

289
  std::shared_ptr<dnnl::memory> AcquireBiasMemoryWithReorder(
290
      const framework::ExecutionContext& ctx, const phi::DenseTensor* bias) {
291 292
    const float* bias_data = bias->data<float>();

293
    if (phi::funcs::is_int8<T_w>() == false) {
294 295 296 297 298 299 300 301 302
      // for BF16/FP32 bias is 1D and has no scales, so reorder is not needed
      return this->AcquireMemoryFromPrimitive(this->fwd_pd_->bias_desc(),
                                              to_void_cast<float>(bias_data));
    } else {
      const std::string bias_key = this->memory_key_ + "@bias";
      auto memory_p = std::static_pointer_cast<dnnl::memory>(
          this->dev_ctx_.GetBlob(bias_key));

      if (!memory_p) {
303
        const auto& scale_data = GetBiasScales(ctx);
304 305 306 307 308 309
        dnnl::primitive_attr attrs;

        int mask = CreateMask(0, scale_data.size() > 1);
        attrs.set_output_scales(mask, scale_data);

        auto user_md = dnnl::memory::desc({bias->dims()[0]},
310
                                          OneDNNGetDataType<float>(),
311 312 313 314 315 316 317
                                          dnnl::memory::format_tag::a);

        memory_p = this->AcquireMemoryWithReorderAndAttrs(
            user_md,
            this->fwd_pd_->bias_desc(),
            to_void_cast<float>(bias_data),
            attrs);
318
        this->dev_ctx_.SetBlob(bias_key, memory_p);
319 320 321 322 323 324
      }
      return memory_p;
    }
  }

  std::shared_ptr<dnnl::memory> AcquireWeightsMemoryWithReorder(
325
      const phi::DenseTensor* weights, const std::vector<float>& scale_data) {
326 327 328
    const std::string weights_key = this->memory_key_ + "@weights";
    auto memory_p = std::static_pointer_cast<dnnl::memory>(
        this->dev_ctx_.GetBlob(weights_key));
M
mozga-intel 已提交
329

330 331 332 333 334
    if (!memory_p) {
      const float* weights_data = weights->data<float>();
      auto weights_dims = this->fwd_pd_->weights_desc().dims();

      auto user_md = dnnl::memory::desc(weights_dims,
335
                                        OneDNNGetDataType<float>(),
336 337
                                        dnnl::memory::format_tag::io);

338
      if (phi::funcs::is_int8<T_w>()) {
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
        dnnl::primitive_attr attrs;
        int mask = CreateMask(0, scale_data.size() > 1);
        attrs.set_output_scales(mask, scale_data);

        memory_p = this->AcquireMemoryWithReorderAndAttrs(
            user_md,
            this->fwd_pd_->weights_desc(),
            to_void_cast<float>(weights_data),
            attrs);
      } else {
        memory_p =
            this->AcquireMemoryWithReorder(user_md,
                                           this->fwd_pd_->weights_desc(),
                                           to_void_cast<float>(weights_data));
      }

      this->dev_ctx_.SetBlob(weights_key, memory_p);
    }
    return memory_p;
358
  }
M
mozga-intel 已提交
359

360
  std::shared_ptr<dnnl::memory> AcquireCustomDstMemory(
361
      const ExecutionContext& ctx, phi::DenseTensor* out) {
362 363
    if (ctx.HasAttr("fuse_residual_connection") &&
        ctx.Attr<bool>("fuse_residual_connection")) {
364
      auto* residual_param = ctx.Input<phi::DenseTensor>("ResidualData");
365 366

      PADDLE_ENFORCE_EQ(
367
          out->dims(),
368
          residual_param->dims(),
369 370 371 372
          platform::errors::InvalidArgument(
              "Output and elementwise parameter need to have the "
              "same dimension sizes, but got output's dimension = %d"
              " and residual param's dimension =%d .",
373
              out->dims().size(),
374
              residual_param->dims().size()));
375

376
      out->ShareDataWith(*residual_param);
377
    }
378
    return this->template AcquireDstMemory<T_out>(out);
379 380
  }  // namespace operators
};   // namespace paddle
381

382 383 384 385 386 387 388 389 390 391
#define IF_CHANGE_FC_TW_TYPENAME(condition, ...) \
  if (condition) {                               \
    using T_w = int8_t;                          \
    __VA_ARGS__();                               \
  } else {                                       \
    using T_w = T_in;                            \
    __VA_ARGS__();                               \
  }

template <typename T_in>
392 393 394 395 396
class FCMKLDNNKernel : public framework::OpKernel<T_in> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    bool fuse_relu = ctx.Attr<std::string>("activation_type") == "relu";
397

398 399 400
    IF_CHANGE_FC_TW_TYPENAME((std::is_same<T_in, uint8_t>::value), ([&] {
                               if (force_fp32_output) {
                                 this->RunKernel<float, T_w>(ctx);
401
                               } else if (phi::funcs::is_int8<T_in>()) {
402 403 404 405 406 407 408 409 410
                                 if (fuse_relu) {
                                   this->RunKernel<uint8_t, T_w>(ctx);
                                 } else {
                                   this->RunKernel<int8_t, T_w>(ctx);
                                 }
                               } else {
                                 this->RunKernel<T_in, T_w>(ctx);
                               }
                             }));
411 412
  }

413 414
  void PrepareSrcMem(const std::shared_ptr<inner_product_forward>& fc_p,
                     const std::shared_ptr<dnnl::memory>& src_mem,
415
                     const phi::DenseTensor* x,
416 417 418 419 420 421
                     const dnnl::engine& engine) const {
    auto x_md = x->mem_desc().reshape(src_mem->get_desc().dims());
    if (x_md != src_mem->get_desc()) {
      dnnl::memory x_mem(x_md, engine, to_void_cast<T_in>(x->data<T_in>()));
      auto reorder_p = dnnl::reorder(x_mem, *src_mem);

422
      auto& astream = OneDNNContext::tls().get_stream();
423 424 425 426 427 428 429
      reorder_p.execute(astream, x_mem, *src_mem);
      astream.wait();
    } else {
      src_mem->set_data_handle(to_void_cast<T_in>(x->data<T_in>()));
    }
  }

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
  void SetOutMemDescWithUnsqueeze2FuseSupport(
      const framework::ExecutionContext& ctx,
      phi::DenseTensor* out,
      const dnnl::memory::desc& out_md) const {
    const std::vector<int>& fused_unsqueeze2_axes =
        ctx.Attr<std::vector<int>>("fused_unsqueeze2_axes");
    const std::vector<int64_t>& op_tz = out_md.dims();
    std::vector<int64_t> unsqueezed_op_tz(
        op_tz.size() + fused_unsqueeze2_axes.size(), 0);

    for (const auto& axis : fused_unsqueeze2_axes) {
      int positive_axis = axis < 0 ? unsqueezed_op_tz.size() + axis : axis;
      unsqueezed_op_tz[positive_axis] = 1;
    }

    int j = 0;
    for (size_t i = 0; i < unsqueezed_op_tz.size(); ++i) {
      if (unsqueezed_op_tz[i] == 0) {
        unsqueezed_op_tz[i] = op_tz[j++];
      }
    }
    out->set_mem_desc(out_md.reshape(unsqueezed_op_tz));
    out->Resize(phi::make_ddim(unsqueezed_op_tz));
  }

  void SetOutMemDescWithReshape2FuseSupport(
      const framework::ExecutionContext& ctx,
      phi::DenseTensor* out,
      const dnnl::memory::desc& out_md) const {
    std::vector<int64_t> fused_reshape2_shape(
        ctx.Attr<std::vector<int>>("fused_reshape2_shape").begin(),
        ctx.Attr<std::vector<int>>("fused_reshape2_shape").end());

    const int out_shape_numel = out->numel();
    const int new_shape_numel = std::accumulate(fused_reshape2_shape.begin(),
                                                fused_reshape2_shape.end(),
                                                1,
                                                std::multiplies<int64_t>());

    for (size_t i = 0; i < fused_reshape2_shape.size(); ++i) {
      if (fused_reshape2_shape[i] == -1) {
        fused_reshape2_shape[i] = -out_shape_numel / new_shape_numel;
        break;
      }
    }

    out->set_mem_desc(out_md.reshape(fused_reshape2_shape));
    out->Resize(phi::make_ddim(fused_reshape2_shape));
  }

  void SetOutMemDescWithLogicalLayoutFusesSupport(
      const framework::ExecutionContext& ctx,
      phi::DenseTensor* out,
      const dnnl::memory::desc& out_md) const {
    if (ctx.HasAttr("fused_unsqueeze2_axes")) {
      SetOutMemDescWithUnsqueeze2FuseSupport(ctx, out, out_md);
    } else if (ctx.HasAttr("fused_reshape2_shape")) {
      SetOutMemDescWithReshape2FuseSupport(ctx, out, out_md);
    } else if (ctx.HasAttr("fused_squeeze2_axes")) {
      out->set_mem_desc(out_md);
      out->Resize(phi::make_ddim(out_md.dims()));
    } else {
      out->set_mem_desc(out_md);
    }
  }

496
  template <typename T_out, typename T_w>
497
  void RunKernel(const framework::ExecutionContext& ctx) const {
498
    const auto& dev_ctx = ctx.template device_context<OneDNNContext>();
499
    const auto& onednn_engine = dev_ctx.GetEngine();
500

501
    const auto* x = ctx.Input<phi::DenseTensor>("Input");
502 503
    const auto* weights = ctx.Input<phi::DenseTensor>("W");
    const auto* bias = ctx.Input<phi::DenseTensor>("Bias");
504
    auto out = ctx.Output<phi::DenseTensor>("Out");
505 506 507

    const auto& scale_weights = ctx.Attr<std::vector<float>>("Scale_weights");

508 509 510 511 512 513 514 515
    std::shared_ptr<dnnl::inner_product_forward> fc_p;
    std::shared_ptr<dnnl::memory> src_memory_p;
    std::shared_ptr<dnnl::memory> weights_memory_p;
    std::shared_ptr<dnnl::memory> bias_memory_p;
    std::shared_ptr<dnnl::memory> dst_memory_p;

    std::string cache_key;
    cache_key.reserve(64);
516
    cache_key = phi::funcs::ExtendKeyWithThreadInfoIfNeeded(
517
        dev_ctx,
518 519 520 521
        phi::funcs::CreateKey(dev_ctx,
                              ctx.InputName("Input"),
                              ctx.InputName("W"),
                              phi::vectorize(x->dims())));
522 523 524 525

    auto inner_product_cache =
        std::static_pointer_cast<InnerProductCache>(dev_ctx.GetBlob(cache_key));

526 527
    RecomputeOutputDims(ctx, x, weights, out);

528 529 530 531 532
    if (inner_product_cache) {
      fc_p = std::make_shared<dnnl::inner_product_forward>(
          inner_product_cache->inner_product_p);
      src_memory_p =
          std::make_shared<dnnl::memory>(inner_product_cache->src_mem);
533
      PrepareSrcMem(fc_p, src_memory_p, x, onednn_engine);
534 535 536 537 538 539 540 541

      weights_memory_p =
          std::make_shared<dnnl::memory>(inner_product_cache->weights_mem);

      dst_memory_p =
          std::make_shared<dnnl::memory>(inner_product_cache->dst_mem);
      if (ctx.HasAttr("fuse_residual_connection") &&
          ctx.Attr<bool>("fuse_residual_connection")) {
542
        auto* residual_param = ctx.Input<phi::DenseTensor>("ResidualData");
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
        out->ShareDataWith(*residual_param);
      }
      auto out_ptr = out->mutable_data<T_out>(
          ctx.GetPlace(), dst_memory_p->get_desc().get_size());
      dst_memory_p->set_data_handle(out_ptr);

      if (bias) {
        bias_memory_p =
            std::make_shared<dnnl::memory>(inner_product_cache->bias_mem);
      }
    } else {
      auto in_col_dims = ctx.Attr<int>("in_num_col_dims");

      FCMKLDNNHandler<T_in, T_w, T_out> handler(ctx,
                                                dev_ctx,
                                                x,
                                                weights,
                                                bias,
                                                out,
                                                in_col_dims,
563
                                                onednn_engine,
564 565 566 567 568 569 570 571
                                                ctx.GetPlace());

      src_memory_p = handler.AcquireSrcMemoryWithReorder(x);
      weights_memory_p =
          handler.AcquireWeightsMemoryWithReorder(weights, scale_weights);
      dst_memory_p = handler.AcquireCustomDstMemory(ctx, out);

      if (bias) {
572
        bias_memory_p = handler.AcquireBiasMemoryWithReorder(ctx, bias);
573 574 575 576 577
      }

      fc_p = handler.AcquireForwardPrimitive();
    }

578
    auto& astream = OneDNNContext::tls().get_stream();
579 580 581 582 583 584 585 586 587 588 589 590 591

    std::unordered_map<int, dnnl::memory> fc_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    if (bias) {
      fc_args.insert({DNNL_ARG_BIAS, *bias_memory_p});
    }

    fc_p->execute(astream, fc_args);
    astream.wait();

592 593 594 595 596 597 598 599 600 601 602 603
    if (!inner_product_cache) {
      auto ip_cache = std::make_shared<InnerProductCache>();
      ip_cache->inner_product_p = *fc_p;
      ip_cache->src_mem = *src_memory_p;
      ip_cache->weights_mem = *weights_memory_p;
      ip_cache->dst_mem = *dst_memory_p;
      if (bias) {
        ip_cache->bias_mem = *bias_memory_p;
      }
      dev_ctx.SetBlob(cache_key, ip_cache);
    }

604
    SetOutMemDescWithLogicalLayoutFusesSupport(
605 606
        ctx,
        out,
607
        dst_memory_p->get_desc().reshape(phi::vectorize(out->dims())));
608
  }
M
mozga-intel 已提交
609

610
  void RecomputeOutputDims(const ExecutionContext& ctx,
611
                           const phi::DenseTensor* x,
612
                           const phi::DenseTensor* weights,
613
                           phi::DenseTensor* out) const {
L
luotao1 已提交
614
    int in_num_col_dims = ctx.Attr<int>("in_num_col_dims");
615
    bool padding_weights = ctx.Attr<bool>("padding_weights");
616 617
    PADDLE_ENFORCE_EQ(padding_weights,
                      false,
618 619
                      platform::errors::PermissionDenied(
                          "Weight padding in fc can not be used in MKLDNN."));
L
luotao1 已提交
620
    std::vector<int64_t> output_dims;
621 622
    FCOutputSize(x->dims(),
                 weights->dims(),
623 624
                 output_dims,
                 in_num_col_dims,
625
                 padding_weights);
626 627
    out->Resize(phi::make_ddim(output_dims));
    out->set_lod(x->lod());
628 629
  }
};
M
mozga-intel 已提交
630 631 632 633

}  // namespace operators
}  // namespace paddle

M
Michał Gallus 已提交
634 635 636 637
// Weights of FC are by default stored using fp32, template argument of weight
// data type implies their destination data type. (What's eventually going to
// be used during computations of kernel).
namespace ops = paddle::operators;
638 639 640

REGISTER_OP_KERNEL(fc,
                   MKLDNN,
641
                   ::phi::CPUPlace,
642 643 644 645
                   ops::FCMKLDNNKernel<float>,
                   ops::FCMKLDNNKernel<paddle::platform::bfloat16>,
                   ops::FCMKLDNNKernel<uint8_t>,
                   ops::FCMKLDNNKernel<int8_t>);