fc_mkldnn_op.cc 16.4 KB
Newer Older
M
mozga-intel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <memory>
W
wanghuancoder 已提交
16

17
#include "paddle/fluid/operators/fc_op.h"
M
mozga-intel 已提交
18
#include "paddle/fluid/platform/mkldnn_helper.h"
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
20

M
mozga-intel 已提交
21 22 23
namespace paddle {
namespace operators {

24 25 26 27 28
using dnnl::inner_product_forward;
using dnnl::memory;
using dnnl::primitive;
using dnnl::prop_kind;
using dnnl::stream;
29 30
using framework::DDim;
using framework::ExecutionContext;
31
using LoDTensor = phi::DenseTensor;
32
using platform::GetMKLDNNFormat;
33
using platform::MKLDNNDeviceContext;
34
using platform::MKLDNNGetDataType;
35
using platform::to_void_cast;
M
mozga-intel 已提交
36

37 38 39 40 41
template <typename T>
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

M
Michał Gallus 已提交
42
template <typename T_in, typename T_w, typename T_out>
43 44 45
class FCMKLDNNHandler
    : public platform::MKLDNNHandlerNoCachingT<T_in,
                                               dnnl::inner_product_forward> {
M
mozga-intel 已提交
46
 public:
47 48
  FCMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
                  const platform::MKLDNNDeviceContext& dev_ctx,
49 50 51 52
                  const phi::DenseTensor* x,
                  const phi::DenseTensor* weights,
                  const phi::DenseTensor* bias,
                  phi::DenseTensor* out,
53 54 55 56 57 58 59 60 61 62 63 64 65 66
                  const int in_num_col_dims,
                  dnnl::engine mkldnn_engine,
                  platform::Place cpu_place)
      : platform::MKLDNNHandlerNoCachingT<T_in, dnnl::inner_product_forward>(
            mkldnn_engine, cpu_place),
        dev_ctx_(dev_ctx) {
    this->memory_key_ = ctx.InputName("W");

    auto x_vec_dims = phi::vectorize(x->dims());
    auto weights_vec_dims = phi::vectorize(weights->dims());

    int MB = 1;
    for (int i = 0; i < in_num_col_dims; ++i) {
      MB *= x_vec_dims[i];
67 68
    }

69 70 71
    int IC = 1;
    for (size_t i = in_num_col_dims; i < x_vec_dims.size(); ++i) {
      IC *= x_vec_dims[i];
72
    }
73

74
    int OC = weights_vec_dims[1];
M
mozga-intel 已提交
75

76
    dnnl::memory::desc bias_md;
77

78 79 80 81 82 83 84 85 86 87 88
    auto src_md = dnnl::memory::desc(
        {MB, IC}, MKLDNNGetDataType<T_in>(), dnnl::memory::format_tag::any);
    auto weights_md = dnnl::memory::desc(
        {OC, IC}, MKLDNNGetDataType<T_w>(), dnnl::memory::format_tag::any);
    auto dst_md = dnnl::memory::desc(
        {MB, OC}, MKLDNNGetDataType<T_out>(), dnnl::memory::format_tag::any);
    if (bias) {
      bias_md = dnnl::memory::desc({bias->numel()},
                                   MKLDNNGetDataType<float>(),
                                   dnnl::memory::format_tag::a);
    }
89

90
    const auto attrs = CreateFCAttrs(ctx);
A
Adam 已提交
91

92 93 94 95 96 97
    this->AcquireForwardPrimitiveDescriptor(attrs,
                                            prop_kind::forward_inference,
                                            src_md,
                                            weights_md,
                                            bias_md,
                                            dst_md);
M
mozga-intel 已提交
98 99
  }

100
 private:
101 102 103
  dnnl::primitive_attr CreateFCAttrs(const ExecutionContext& ctx) {
    dnnl::primitive_attr attributes;
    dnnl::post_ops post_operations;
104

105 106 107 108 109
    std::vector<float> output_shift_scale;
    float scale = 1.0f;
    if (IsInt8<T_w>()) {
      std::tie(output_shift_scale, scale) = ComputeOutputShiftScale(ctx);
      int mask = CreateMask(1, output_shift_scale.size() > 1);
110
      attributes.set_output_scales(mask, output_shift_scale);
111
    }
112

113
    float sum_scale = 1.0f;
114 115
    if (ctx.HasAttr("fuse_residual_connection") &&
        ctx.Attr<bool>("fuse_residual_connection")) {
116
      post_operations.append_sum(sum_scale);
117
    }
M
mozga-intel 已提交
118

119 120 121 122
    // ReLU from "fc_fuse_pass"
    if (ctx.Attr<std::string>("activation_type") == "relu") {
      post_operations.append_eltwise(
          scale, dnnl::algorithm::eltwise_relu, 0.0f, 0.0f);
123
    }
124
    platform::AppendActivation(ctx, post_operations, scale);
125

126 127
    attributes.set_post_ops(post_operations);
    return attributes;
128 129
  }

M
Michał Gallus 已提交
130 131
  // Compute the bias scales so that its values correspond to the
  // scale of data being an output of weights and input multiplication
132 133 134
  std::vector<float> ComputeBiasScales(
      const float scale_in, const std::vector<float>& scale_weights) {
    std::vector<float> bias_scales(scale_weights.size());
M
Michał Gallus 已提交
135

136 137
    for (size_t i = 0; i < bias_scales.size(); ++i) {
      if (scale_weights[i] == 0.0)
M
Michał Gallus 已提交
138 139
        bias_scales[i] = 1.0f;
      else
140
        bias_scales[i] = scale_in * scale_weights[i];
M
Michał Gallus 已提交
141 142 143 144 145 146 147 148 149 150
    }

    return bias_scales;
  }

  // Correct output scale, to take into account scaling of input and weights
  // Since the data that comes out of input and weight multiplication is
  // scaled with its own scales, this data needs to be divided by
  // those scales to normalise them back to what their floating-point range
  // was. Then we multiply them by desired output scale we want on the output.
151 152
  std::tuple<std::vector<float>, float> ComputeOutputShiftScale(
      const ExecutionContext& ctx) {
M
Michał Gallus 已提交
153 154
    auto scale_in_data = ctx.Attr<float>("Scale_in");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
155 156
    bool has_activation = !ctx.Attr<std::string>("activation_type").empty();
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
157

M
Michał Gallus 已提交
158
    // If the output will be in floats, we don't multiply by scale_out.
159

160 161 162 163 164 165
    float scale = (!force_fp32_output && has_activation)
                      ? ctx.Attr<float>("Scale_out")
                      : 1.0f;
    float inner_scale = (force_fp32_output || has_activation)
                            ? 1.0f
                            : ctx.Attr<float>("Scale_out");
M
Michał Gallus 已提交
166 167 168 169 170
    const size_t weight_scales_num = scale_weights_data.size();
    std::vector<float> output_shift_scale(weight_scales_num);

    for (size_t i = 0; i < weight_scales_num; i++) {
      if (scale_weights_data[i] == 0.0)
171
        output_shift_scale[i] = inner_scale;
M
Michał Gallus 已提交
172 173
      else
        output_shift_scale[i] =
174
            inner_scale / (scale_in_data * scale_weights_data[i]);
M
Michał Gallus 已提交
175 176
    }

177
    return make_tuple(output_shift_scale, scale);
M
Michał Gallus 已提交
178 179 180 181 182 183 184 185 186 187
  }

  // Computing MKL-DNN's scaling mask which determines along which dimension
  // slice should the scaling be applied. For more data plase refer to:
  // https://intel.github.io/mkl-dnn/group__c__api__attributes.html
  // Section dnnl_status_t DNNL_API dnnl_primitive_attr_set_output_scales
  int CreateMask(int slice_dimension, bool is_multi_channel_quantizied) {
    return is_multi_channel_quantizied ? 1 << slice_dimension : 0;
  }

188 189 190 191 192 193
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorderAndAttrs(
      const dnnl::memory::desc& user_md,
      const dnnl::memory::desc& target_md,
      void* ptr,
      const dnnl::primitive_attr& attrs) {
    std::shared_ptr<dnnl::memory> target_memory_p;
M
Michał Gallus 已提交
194

195 196 197 198 199
    auto user_memory_p =
        std::make_shared<dnnl::memory>(user_md, this->engine_, ptr);
    target_memory_p = std::make_shared<dnnl::memory>(target_md, this->engine_);
    auto reorder_p = std::make_shared<dnnl::reorder>(
        *user_memory_p, *target_memory_p, attrs);
M
Michał Gallus 已提交
200

201 202 203 204 205
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    reorder_p->execute(
        astream,
        {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
    astream.wait();
M
Michał Gallus 已提交
206

207 208
    return target_memory_p;
  }
209

210 211
  std::string memory_key_;
  const platform::MKLDNNDeviceContext& dev_ctx_;
M
Michał Gallus 已提交
212

213
 public:
214 215
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorder(
      const phi::DenseTensor* x) {
216 217 218 219 220 221 222
    const T_in* x_data = x->data<T_in>();

    auto user_md = x->mem_desc();
    if (x->dims().size() != 2) {
      // reshape restrictions are always satisfied because in case of 3 or 4 dim
      // input, plain layout is enforced
      user_md = user_md.reshape(this->fwd_pd_->src_desc().dims());
M
Michał Gallus 已提交
223 224
    }

225 226
    return this->AcquireMemoryWithReorder(
        user_md, this->fwd_pd_->src_desc(), to_void_cast<T_in>(x_data));
227
  }
M
mozga-intel 已提交
228

229
  std::shared_ptr<dnnl::memory> AcquireBiasMemoryWithReorder(
230
      const phi::DenseTensor* bias,
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
      const float scale_in,
      const std::vector<float>& scale_weights) {
    const float* bias_data = bias->data<float>();

    if (IsInt8<T_w>() == false) {
      // for BF16/FP32 bias is 1D and has no scales, so reorder is not needed
      return this->AcquireMemoryFromPrimitive(this->fwd_pd_->bias_desc(),
                                              to_void_cast<float>(bias_data));
    } else {
      const std::string bias_key = this->memory_key_ + "@bias";
      auto memory_p = std::static_pointer_cast<dnnl::memory>(
          this->dev_ctx_.GetBlob(bias_key));

      if (!memory_p) {
        const auto& scale_data = ComputeBiasScales(scale_in, scale_weights);
        dnnl::primitive_attr attrs;

        int mask = CreateMask(0, scale_data.size() > 1);
        attrs.set_output_scales(mask, scale_data);

        auto user_md = dnnl::memory::desc({bias->dims()[0]},
                                          MKLDNNGetDataType<float>(),
                                          dnnl::memory::format_tag::a);

        memory_p = this->AcquireMemoryWithReorderAndAttrs(
            user_md,
            this->fwd_pd_->bias_desc(),
            to_void_cast<float>(bias_data),
            attrs);
      }
      return memory_p;
    }
  }

  std::shared_ptr<dnnl::memory> AcquireWeightsMemoryWithReorder(
266
      const phi::DenseTensor* weights, const std::vector<float>& scale_data) {
267 268 269
    const std::string weights_key = this->memory_key_ + "@weights";
    auto memory_p = std::static_pointer_cast<dnnl::memory>(
        this->dev_ctx_.GetBlob(weights_key));
M
mozga-intel 已提交
270

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    if (!memory_p) {
      const float* weights_data = weights->data<float>();
      auto weights_dims = this->fwd_pd_->weights_desc().dims();

      auto user_md = dnnl::memory::desc(weights_dims,
                                        MKLDNNGetDataType<float>(),
                                        dnnl::memory::format_tag::io);

      if (IsInt8<T_w>()) {
        dnnl::primitive_attr attrs;
        int mask = CreateMask(0, scale_data.size() > 1);
        attrs.set_output_scales(mask, scale_data);

        memory_p = this->AcquireMemoryWithReorderAndAttrs(
            user_md,
            this->fwd_pd_->weights_desc(),
            to_void_cast<float>(weights_data),
            attrs);
      } else {
        memory_p =
            this->AcquireMemoryWithReorder(user_md,
                                           this->fwd_pd_->weights_desc(),
                                           to_void_cast<float>(weights_data));
      }

      this->dev_ctx_.SetBlob(weights_key, memory_p);
    }
    return memory_p;
299
  }
M
mozga-intel 已提交
300

301
  std::shared_ptr<dnnl::memory> AcquireCustomDstMemory(
302
      const ExecutionContext& ctx, phi::DenseTensor* out) {
303 304
    if (ctx.HasAttr("fuse_residual_connection") &&
        ctx.Attr<bool>("fuse_residual_connection")) {
305
      auto* residual_param = ctx.Output<phi::DenseTensor>("ResidualData");
306 307

      PADDLE_ENFORCE_EQ(
308
          out->dims(),
309
          residual_param->dims(),
310 311 312 313
          platform::errors::InvalidArgument(
              "Output and elementwise parameter need to have the "
              "same dimension sizes, but got output's dimension = %d"
              " and residual param's dimension =%d .",
314
              out->dims().size(),
315
              residual_param->dims().size()));
316

317
      out->ShareDataWith(*residual_param);
318
    }
319
    return this->template AcquireDstMemory<T_out>(out);
320 321
  }  // namespace operators
};   // namespace paddle
322

323 324 325 326 327 328 329 330 331 332
#define IF_CHANGE_FC_TW_TYPENAME(condition, ...) \
  if (condition) {                               \
    using T_w = int8_t;                          \
    __VA_ARGS__();                               \
  } else {                                       \
    using T_w = T_in;                            \
    __VA_ARGS__();                               \
  }

template <typename T_in>
333 334 335 336 337
class FCMKLDNNKernel : public framework::OpKernel<T_in> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    bool fuse_relu = ctx.Attr<std::string>("activation_type") == "relu";
338

339 340 341 342 343 344 345 346 347 348 349 350 351
    IF_CHANGE_FC_TW_TYPENAME((std::is_same<T_in, uint8_t>::value), ([&] {
                               if (force_fp32_output) {
                                 this->RunKernel<float, T_w>(ctx);
                               } else if (IsInt8<T_in>()) {
                                 if (fuse_relu) {
                                   this->RunKernel<uint8_t, T_w>(ctx);
                                 } else {
                                   this->RunKernel<int8_t, T_w>(ctx);
                                 }
                               } else {
                                 this->RunKernel<T_in, T_w>(ctx);
                               }
                             }));
352 353
  }

354
  template <typename T_out, typename T_w>
355 356 357 358 359 360
  void RunKernel(const framework::ExecutionContext& ctx) const {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const auto* x = ctx.Input<LoDTensor>("Input");
361 362
    const auto* weights = ctx.Input<phi::DenseTensor>("W");
    const auto* bias = ctx.Input<phi::DenseTensor>("Bias");
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    auto out = ctx.Output<LoDTensor>("Out");

    auto in_col_dims = ctx.Attr<int>("in_num_col_dims");

    const float scale_in = ctx.Attr<float>("Scale_in");
    const auto& scale_weights = ctx.Attr<std::vector<float>>("Scale_weights");

    RecomputeOutputDims(ctx, x, weights, out);

    FCMKLDNNHandler<T_in, T_w, T_out> handler(ctx,
                                              dev_ctx,
                                              x,
                                              weights,
                                              bias,
                                              out,
                                              in_col_dims,
                                              mkldnn_engine,
                                              ctx.GetPlace());

    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(x);
    auto weights_memory_p =
        handler.AcquireWeightsMemoryWithReorder(weights, scale_weights);
    auto dst_memory_p = handler.AcquireCustomDstMemory(ctx, out);

    auto fc_p = handler.AcquireForwardPrimitive();
    auto& astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();

    std::unordered_map<int, dnnl::memory> fc_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    if (bias) {
      auto bias_memory_p =
          handler.AcquireBiasMemoryWithReorder(bias, scale_in, scale_weights);
      fc_args.insert({DNNL_ARG_BIAS, *bias_memory_p});
    }

    fc_p->execute(astream, fc_args);
    astream.wait();

    out->set_mem_desc(
        dst_memory_p->get_desc().reshape(phi::vectorize(out->dims())));
406
  }
M
mozga-intel 已提交
407

408
  void RecomputeOutputDims(const ExecutionContext& ctx,
409
                           const LoDTensor* x,
410
                           const phi::DenseTensor* weights,
411
                           LoDTensor* out) const {
L
luotao1 已提交
412
    int in_num_col_dims = ctx.Attr<int>("in_num_col_dims");
413
    bool padding_weights = ctx.Attr<bool>("padding_weights");
414 415
    PADDLE_ENFORCE_EQ(padding_weights,
                      false,
416 417
                      platform::errors::PermissionDenied(
                          "Weight padding in fc can not be used in MKLDNN."));
L
luotao1 已提交
418
    std::vector<int64_t> output_dims;
419 420
    FCOutputSize(x->dims(),
                 weights->dims(),
421 422
                 output_dims,
                 in_num_col_dims,
423
                 padding_weights);
424 425
    out->Resize(phi::make_ddim(output_dims));
    out->set_lod(x->lod());
426 427
  }
};
M
mozga-intel 已提交
428 429 430 431

}  // namespace operators
}  // namespace paddle

M
Michał Gallus 已提交
432 433 434 435
// Weights of FC are by default stored using fp32, template argument of weight
// data type implies their destination data type. (What's eventually going to
// be used during computations of kernel).
namespace ops = paddle::operators;
436 437 438 439 440 441 442 443

REGISTER_OP_KERNEL(fc,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
                   ops::FCMKLDNNKernel<float>,
                   ops::FCMKLDNNKernel<paddle::platform::bfloat16>,
                   ops::FCMKLDNNKernel<uint8_t>,
                   ops::FCMKLDNNKernel<int8_t>);