analysis_predictor.cc 48.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17
#include <glog/logging.h>
#include <algorithm>
N
nhzlx 已提交
18
#include <fstream>
19
#include <memory>
20
#include <set>
21
#include <string>
22
#include <utility>
23
#include <vector>
24
#include "paddle/fluid/extension/include/ext_op_meta_info.h"
25
#include "paddle/fluid/framework/feed_fetch_method.h"
26
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
27
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
28
#include "paddle/fluid/framework/ir/pass.h"
29
#include "paddle/fluid/framework/naive_executor.h"
30
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/framework/var_type_traits.h"
32
#include "paddle/fluid/framework/version.h"
33
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
34
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
35
#include "paddle/fluid/inference/api/helper.h"
L
luotao1 已提交
36
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
37
#include "paddle/fluid/inference/utils/singleton.h"
38
#include "paddle/fluid/memory/memcpy.h"
39
#include "paddle/fluid/platform/cpu_helper.h"
40
#include "paddle/fluid/platform/device_context.h"
41
#include "paddle/fluid/platform/gpu_info.h"
42
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
43 44
#include "paddle/fluid/platform/profiler.h"

45 46 47 48
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

49 50 51 52
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

Y
Yan Chunwei 已提交
53 54
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
55
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
56 57
#endif

58 59
namespace paddle {

N
nhzlx 已提交
60
using inference::Singleton;
N
nhzlx 已提交
61
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
62
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
63 64
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
N
nhzlx 已提交
65
#endif
66

67 68 69 70
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
71 72
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
73 74 75 76 77 78
    return true;
  }
  return false;
}
}  // namespace

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
bool PaddleTensorToLoDTensor(const PaddleTensor &pt, framework::LoDTensor *t,
                             const platform::Place &place) {
  framework::DDim ddim = framework::make_ddim(pt.shape);
  void *input_ptr;
  if (pt.dtype == PaddleDType::INT64) {
    input_ptr = t->mutable_data<int64_t>(ddim, place);
  } else if (pt.dtype == PaddleDType::FLOAT32) {
    input_ptr = t->mutable_data<float>(ddim, place);
  } else if (pt.dtype == PaddleDType::INT32) {
    input_ptr = t->mutable_data<int32_t>(ddim, place);
  } else {
    LOG(ERROR) << "unsupported feed type " << pt.dtype;
    return false;
  }

  PADDLE_ENFORCE_NOT_NULL(
      input_ptr,
      paddle::platform::errors::Fatal(
          "Cannot convert to LoDTensor because LoDTensor creation failed."));
  PADDLE_ENFORCE_NOT_NULL(
      pt.data.data(),
      paddle::platform::errors::InvalidArgument(
          "The data contained in the input PaddleTensor is illegal."));

  if (platform::is_cpu_place(place)) {
    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
    std::memcpy(static_cast<void *>(input_ptr), pt.data.data(),
                pt.data.length());
107 108 109 110
  } else if (platform::is_gpu_place(place)) {
    PADDLE_ENFORCE_EQ(platform::is_xpu_place(place), false,
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
111
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
112 113 114
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto *dev_ctx =
        static_cast<const platform::CUDADeviceContext *>(pool.Get(place));
115
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place);
116 117 118 119 120 121 122
    memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                 platform::CPUPlace(), pt.data.data(), pt.data.length(),
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUDA, should not reach here."));
#endif
123 124 125 126 127 128 129 130 131 132 133 134
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    auto dst_xpu_place = BOOST_GET_CONST(platform::XPUPlace, place);
    memory::Copy(dst_xpu_place, static_cast<void *>(input_ptr),
                 platform::CPUPlace(), pt.data.data(), pt.data.length());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with XPU, should not reach here."));
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "The analysis predictor supports CPU, GPU and XPU now."));
135 136 137 138 139 140 141 142 143 144
  }
  // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
  framework::LoD lod;
  for (auto &level : pt.lod) {
    lod.emplace_back(level);
  }
  t->set_lod(lod);
  return true;
}

Y
Yan Chunwei 已提交
145
bool AnalysisPredictor::Init(
146 147
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
148
  VLOG(3) << "Predictor::init()";
149 150
  if (config_.with_profile_) {
    LOG(WARNING) << "Profiler is activated, which might affect the performance";
151 152
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
153
    platform::EnableProfiler(tracking_device);
154 155 156
  } else {
    LOG(INFO) << "Profiler is deactivated, and no profiling report will be "
                 "generated.";
T
tensor-tang 已提交
157 158
  }

159
  // no matter with or without MKLDNN
L
luotao1 已提交
160
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
161

162 163 164 165 166 167 168 169 170 171 172 173 174
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
175
  }
176 177 178 179 180 181 182 183 184

  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
185
  if (parent_scope) {
186 187
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
188 189
        platform::errors::PreconditionNotMet(
            "Both program and parent_scope should be set in Clone mode."));
Y
Yan Chunwei 已提交
190
    scope_ = parent_scope;
191
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
192
  } else {
193
    paddle::framework::InitDevices();
W
Wilber 已提交
194 195
    // TODO(wilber): we need to release memory occupied by weights.
    scope_.reset(new paddle::framework::Scope());
196
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
197
  }
198 199 200 201 202
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
203 204
  if (!program) {
    if (!LoadProgramDesc()) return false;
205 206 207 208 209 210 211 212 213
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

214 215 216 217
    // if enable_ir_optim_ is false,
    // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will
    // not be executed.
    OptimizeInferenceProgram();
Y
Yan Chunwei 已提交
218
  } else {
219 220
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
221 222
    inference_program_ = program;
  }
M
Michal Gallus 已提交
223

224 225 226 227 228
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
229
  if (config_.use_gpu()) {
230 231 232
    PADDLE_ENFORCE_EQ(config_.use_xpu(), false,
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
233
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
234
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
235 236 237 238 239 240 241 242
    if (config_.thread_local_stream_enabled()) {
      auto *ctx = static_cast<platform::CUDADeviceContext *>(
          platform::DeviceContextPool::Instance().Get(place_));
      VLOG(3) << "The prediction process will be completed using a separate "
                 "normal-priority stream on each thread.";
      ctx->ResetThreadContext(platform::stream::Priority::kNormal);
    }
#endif
243
  } else if (config_.use_xpu()) {
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    if (config_.lite_engine_enabled()) {
#ifdef LITE_SUBGRAPH_WITH_XPU
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of Host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      place_ = paddle::platform::CPUPlace();
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use an XPU lite engine, but Paddle was not compiled "
          "with it."));
#endif  // LITE_SUBGRAPH_WITH_XPU
    } else {
#ifdef PADDLE_WITH_XPU
      place_ = paddle::platform::XPUPlace(config_.xpu_device_id());
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use XPU forward propagation (inference without lite "
          "engine), but Paddle was not compiled "
          "with WITH_XPU."));
#endif  // PADDLE_WITH_XPU
    }
267 268 269 270 271 272
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
W
wenbin 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

static bool IsPrepareDataOptTargetOp(framework::OpDesc *op) {
  // here is prepare data optimization related bad cases:
  // let's assume an op behind conditional_block and if conditional_block
  // chooses branch 1, the op need to call prepare data. else the op don't need
  // to call prepare data. In running, if predictor chooses branch 2, then
  // optimization takes effect, later issue is followed if predictor chooses
  // branch 1, because the op lost chance to prepare data.
  std::vector<std::string> op_type = {"conditional_block_infer",
                                      "select_input"};
  for (const auto &type : op_type) {
    if (op->Type() == type) {
      return true;
    }
  }
  return false;
}

static void DisablePrepareDataOpt(
    std::shared_ptr<framework::ProgramDesc> inference_program, int block,
    bool pre_disable_opt) {
  bool disable_opt = false;
  auto &infer_block = inference_program->Block(block);
  for (auto *op : infer_block.AllOps()) {
    if (disable_opt || pre_disable_opt) {
      op->SetAttr("inference_force_prepare_data", true);
    }
    if (op->HasAttr("sub_block")) {
      int blockID = op->GetBlockAttrId("sub_block");
      DisablePrepareDataOpt(inference_program, blockID,
                            disable_opt || pre_disable_opt);
    }
    // disable prepare data if unfriendly op is found
306 307 308
    if (!disable_opt) {
      disable_opt = IsPrepareDataOptTargetOp(op);
    }
W
wenbin 已提交
309 310 311
  }
}

312
bool AnalysisPredictor::PrepareExecutor() {
W
wenbin 已提交
313 314
  DisablePrepareDataOpt(inference_program_, 0, false);

315
  executor_->Prepare(sub_scope_, *inference_program_, 0,
316
                     config_.use_feed_fetch_ops_);
317

318 319 320
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::PreconditionNotMet(
                              "The sub_scope should not be nullptr."));
Y
Yan Chunwei 已提交
321

322 323 324
  return true;
}

325 326
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
327 328 329 330 331 332 333 334 335 336 337 338
  std::vector<std::vector<int>> inputs_shape;
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs_shape.emplace_back(inputs[i].shape);
  }
  MkldnnPreSet(inputs_shape);
#endif
}

void AnalysisPredictor::MkldnnPreSet(
    const std::vector<std::vector<int>> &inputs_shape) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(2) << "AnalysisPredictor::ZeroCopyRun get_cur_mkldnn_session_id="
339
          << platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id();
340 341 342
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
343 344 345 346
    platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::
            kMKLDNNSessionID_CacheClearing);
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(
347 348 349
        config_.mkldnn_cache_capacity_);
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
W
Wilber 已提交
350 351 352
    for (size_t i = 0; i < inputs_shape.size(); ++i) {
      for (size_t j = 0; j < inputs_shape[i].size(); ++j) {
        ss << inputs_shape[i][j] << "-";
353 354 355
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
356
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str(ss.str());
357 358 359 360 361 362 363 364
  }
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
#ifdef PADDLE_WITH_MKLDNN
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
365 366 367 368 369 370 371 372
    if (VLOG_IS_ON(2)) {
      auto shape_blob_size = static_cast<platform::MKLDNNDeviceContext *>(
                                 (&platform::DeviceContextPool::Instance())
                                     ->Get(platform::CPUPlace()))
                                 ->GetShapeBlobSize();
      CHECK_LE(shape_blob_size,
               static_cast<size_t>(config_.mkldnn_cache_capacity_));
    }
373 374 375 376
    paddle::platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default);
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(0);
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str("");
377 378 379 380
  }
#endif
}

381 382 383
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
384
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
385 386 387
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
388
  VLOG(3) << "Predictor::predict";
389 390 391 392
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
393 394
  PADDLE_ENFORCE_NOT_NULL(scope, platform::errors::PreconditionNotMet(
                                     "The scope should not be nullptr."));
395 396
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
397
    return false;
398
  }
M
Michal Gallus 已提交
399

400 401 402
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
403

404 405 406 407
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
408
  }
Y
Yan Chunwei 已提交
409

M
minqiyang 已提交
410
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
411

Y
Yan Chunwei 已提交
412 413 414 415 416
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
417 418 419
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
420
  tensor_array_batch_cleaner_.ResetNoTensorVars();
421 422 423 424

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
425 426
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
T
Tao Luo 已提交
427
#endif
428
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
429 430 431 432
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
433
#endif
434 435
  return true;
}
436

437 438
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
439
  VLOG(3) << "Predictor::set_feed";
440 441 442 443 444 445 446 447 448 449
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
450 451
    framework::LoDTensor *input = &feed_tensors_[i];
    if (!PaddleTensorToLoDTensor(inputs[i], input, place_)) {
452 453 454
      return false;
    }
    int idx = -1;
455
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
456 457
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
458 459
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
460 461
      }
      idx = feed_names_[name];
462
    } else {
463
      idx = BOOST_GET_CONST(int, feeds_[i]->GetAttr("col"));
464
    }
465
    framework::SetFeedVariable(scope, *input, "feed", idx);
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
492
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
493 494
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
495
    int idx = BOOST_GET_CONST(int, fetches_[i]->GetAttr("col"));
496 497 498 499 500
    PADDLE_ENFORCE_EQ(
        static_cast<size_t>(idx), i,
        platform::errors::InvalidArgument(
            "Fetch op's col attr(%d) should be equal to the index(%d)", idx,
            i));
501
    framework::FetchType &fetch_var =
502
        framework::GetFetchVariable(*scope, "fetch", idx);
503
    auto &fetch = BOOST_GET(framework::LoDTensor, fetch_var);
504 505
    auto type = fetch.type();
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
506
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
507
    if (type == framework::proto::VarType::FP32) {
508 509
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
510
    } else if (type == framework::proto::VarType::INT64) {
511 512
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
513 514 515
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
516
    } else {
517
      LOG(ERROR) << "unknown type, only support float32, int64 and int32 now.";
518 519
    }
  }
Y
Yan Chunwei 已提交
520 521
  return true;
}
522

523
void AnalysisPredictor::PrepareArgument() {
524
  argument_.SetUseGPU(config_.use_gpu());
525
  argument_.SetUseFcPadding(config_.use_fc_padding());
526
  argument_.SetGPUDeviceId(config_.gpu_device_id());
527
  argument_.SetEnableAnalysisOptim(config_.enable_ir_optim_);
Y
Yan Chunwei 已提交
528
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
T
Tao Luo 已提交
529
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
530
  // Analyze inference_program
531
  argument_.SetPredictorID(predictor_id_);
532
  argument_.SetOptimCacheDir(config_.opt_cache_dir_);
533 534
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
535
  } else {
536 537 538 539 540 541
    PADDLE_ENFORCE_EQ(config_.params_file().empty(), false,
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or param_file should be set."));
    PADDLE_ENFORCE_EQ(config_.prog_file().empty(), false,
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or prog_file should be set."));
N
nhzlx 已提交
542
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
543

544 545
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
546
  }
547

548
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
549
    LOG(INFO) << "TensorRT subgraph engine is enabled";
550 551 552
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
553
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
554
    argument_.SetTensorRtDisabledOPs(config_.trt_disabled_ops_);
555 556
    argument_.SetTensorRtUseDLA(config_.trt_use_dla_);
    argument_.SetTensorRtDLACore(config_.trt_dla_core_);
N
nhzlx 已提交
557
    argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
N
nhzlx 已提交
558
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
559
    argument_.SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
560
    argument_.SetTensorRtUseOSS(config_.trt_use_oss_);
561 562 563
    argument_.SetMinInputShape(config_.min_input_shape_);
    argument_.SetMaxInputShape(config_.max_input_shape_);
    argument_.SetOptimInputShape(config_.optim_input_shape_);
564
    argument_.SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_);
W
Wojciech Uss 已提交
565
  }
566

D
denglin-github 已提交
567 568 569 570 571 572
  if (config_.dlnne_enabled()) {
    LOG(INFO) << "Dlnne subgraph is enabled";
    argument_.SetUseDlnne(true);
    argument_.SetDlnneMinSubgraphSize(config_.dlnne_min_subgraph_size_);
  }

石晓伟 已提交
573
  if (config_.lite_engine_enabled()) {
W
Wilber 已提交
574 575
    argument_.SetCpuMathLibraryNumThreads(
        config_.cpu_math_library_num_threads());
石晓伟 已提交
576 577 578
    argument_.SetLitePrecisionMode(config_.lite_precision_mode_);
    argument_.SetLitePassesFilter(config_.lite_passes_filter_);
    argument_.SetLiteOpsFilter(config_.lite_ops_filter_);
579 580 581
    argument_.SetLiteZeroCopy(config_.lite_zero_copy_);
    argument_.SetUseXpu(config_.use_xpu_);
    argument_.SetXpuL3WorkspaceSize(config_.xpu_l3_workspace_size_);
W
Wilber 已提交
582 583 584 585 586
    argument_.SetXpuLocked(config_.xpu_locked_);
    argument_.SetXpuAutotune(config_.xpu_autotune_);
    argument_.SetXpuAutotuneFile(config_.xpu_autotune_file_);
    argument_.SetXpuPrecision(config_.xpu_precision_);
    argument_.SetXpuAdaptiveSeqlen(config_.xpu_adaptive_seqlen_);
石晓伟 已提交
587 588 589
    LOG(INFO) << "Lite subgraph engine is enabled";
  }

590
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
591
    LOG(INFO) << "MKLDNN is enabled";
592 593 594
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

595 596 597 598 599 600 601 602
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
    argument_.SetQuantizeEnabledOpTypes(
        config_.mkldnn_quantizer_config()->enabled_op_types());
    argument_.SetQuantizeExcludedOpIds(
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
603 604 605 606
  if (config_.use_mkldnn_bfloat16_) {
    LOG(INFO) << "Bfloat16 is enabled";
    argument_.SetBfloat16EnabledOpTypes(config_.bfloat16_enabled_op_types_);
  }
607 608
#endif

609
  auto passes = config_.pass_builder()->AllPasses();
Y
Yan Chunwei 已提交
610 611 612 613
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
614
  argument_.SetDisableLogs(config_.glog_info_disabled());
615
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
616
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
617
  argument_.SetScopeNotOwned(scope_.get());
618 619 620 621 622
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  PrepareArgument();
623 624
  Analyzer().Run(&argument_);

625 626 627
  PADDLE_ENFORCE_EQ(
      argument_.scope_valid(), true,
      platform::errors::InvalidArgument("The argument scope should be valid."));
628 629
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
630
  inference_program_.reset(
631
      new framework::ProgramDesc(argument_.ir_analyzed_program()));
632 633 634 635
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  argument_.PartiallyRelease();
  config_.PartiallyRelease();
636
  LOG(INFO) << "======= optimize end =======";
Y
Yan Chunwei 已提交
637
}
638 639

template <>
640 641
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
W
Wilber 已提交
642 643
  // TODO(NHZlX): Should add the link to the doc of
  // paddle_infer::CreatePredictor<paddle_infer::Config>
P
Pei Yang 已提交
644 645 646 647
  if (config.glog_info_disabled()) {
    FLAGS_logtostderr = 1;
    FLAGS_minloglevel = 2;  // GLOG_ERROR
  }
M
minqiyang 已提交
648
  VLOG(3) << "create AnalysisConfig";
649 650 651 652
  PADDLE_ENFORCE_EQ(
      config.is_valid(), true,
      platform::errors::InvalidArgument(
          "Note: Each config can only be used for one predictor."));
653

654 655 656 657
  // Register custom operators compiled by the user.
  // This function can only be executed once per process.
  static std::once_flag custom_operators_registered;
  std::call_once(custom_operators_registered,
658
                 []() { inference::RegisterAllCustomOperator(); });
659

660
  if (config.use_gpu()) {
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
    static std::once_flag gflags_initialized;
    static bool process_level_allocator_enabled;

    std::call_once(gflags_initialized, [&]() {
      std::vector<std::string> gflags;
      PADDLE_ENFORCE_GE(
          config.memory_pool_init_size_mb(), 0.f,
          platform::errors::InvalidArgument(
              "The size of memory pool should be greater than 0."));
      PADDLE_ENFORCE_GE(
          config.gpu_device_id(), 0,
          platform::errors::InvalidArgument(
              "Invalid device id (%d). The device id should be greater than 0.",
              config.gpu_device_id()));
      gflags.push_back("dummy");

      float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
      if (fraction_of_gpu_memory > 0.95f) {
        LOG(ERROR)
            << "Allocate too much memory for the GPU memory pool, assigned "
            << config.memory_pool_init_size_mb() << " MB";
        LOG(ERROR) << "Try to shink the value by setting "
                      "AnalysisConfig::EnableGpu(...)";
      }
685

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
      if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
        std::string flag = "--fraction_of_gpu_memory_to_use=" +
                           std::to_string(fraction_of_gpu_memory);
        VLOG(3) << "set flag: " << flag;
        gflags.push_back(flag);
        gflags.push_back("--cudnn_deterministic=True");
      }

      if (config.thread_local_stream_enabled()) {
        gflags.push_back("--allocator_strategy=thread_local");
        process_level_allocator_enabled = false;
      } else {
        process_level_allocator_enabled = true;
      }

W
Wilber 已提交
701 702 703 704 705 706 707
// TODO(wilber): jetson tx2 may fail to run the model due to insufficient memory
// under the native_best_fit strategy. Modify the default allocation strategy to
// auto_growth. todo, find a more appropriate way to solve the problem.
#ifdef WITH_NV_JETSON
      gflags.push_back("--allocator_strategy=auto_growth");
#endif

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
      if (framework::InitGflags(gflags)) {
        VLOG(3) << "The following gpu analysis configurations only take effect "
                   "for the first predictor: ";
        for (size_t i = 1; i < gflags.size(); ++i) {
          VLOG(3) << gflags[i];
        }
      } else {
        LOG(WARNING) << "The one-time configuration of analysis predictor "
                        "failed, which may be due to native predictor called "
                        "first and its configurations taken effect.";
      }
    });

    if (config.thread_local_stream_enabled() &&
        process_level_allocator_enabled) {
723 724 725 726 727 728
      PADDLE_THROW(platform::errors::Fatal(
          "When binding threads and streams, the use of "
          "process-level allocators will result in undefined result "
          "errors due to memory asynchronous operations."
          "The thread and stream binding configuration of all "
          "predictors should be the same in a single process."));
729 730 731 732
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
733 734
  // Each config can only be used for one predictor.
  config.SetInValid();
735 736 737 738 739 740 741
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
742 743
    return nullptr;
  }
744

G
Gabor Buella 已提交
745
  return predictor;
746 747
}

748 749 750 751 752 753 754 755 756 757 758 759
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

760
void AnalysisPredictor::PrepareFeedFetch() {
761 762 763
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::InvalidArgument(
                              "The sub_scope should not be nullptr."));
764
  CreateFeedFetchVar(sub_scope_);
765 766
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
767
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
768 769 770 771 772
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
773
      idx2feeds_[idx] = op->Output("Out")[0];
774
    } else if (op->Type() == "fetch") {
775
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
Y
Yan Chunwei 已提交
776 777
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
778
      }
Y
Yan Chunwei 已提交
779
      fetches_[idx] = op;
N
nhzlx 已提交
780
      idx2fetches_[idx] = op->Input("X")[0];
781 782 783 784
    }
  }
}

785
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
786 787
  PADDLE_ENFORCE_NOT_NULL(scope, platform::errors::InvalidArgument(
                                     "The scope should not be nullptr."));
788
  auto *var = scope->Var("feed");
789
  var->GetMutable<framework::FeedList>();
790
  var = scope->Var("fetch");
791
  var->GetMutable<framework::FetchList>();
792 793
}

N
nhzlx 已提交
794 795 796 797 798 799 800 801
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

802 803 804 805 806 807
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  std::vector<std::string> names = GetInputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
808 809
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::PreconditionNotMet(
                                     "Input %s does not exist.", name));
810 811 812 813 814
    input_shapes[name] = var->GetShape();
  }
  return input_shapes;
}

N
nhzlx 已提交
815 816 817 818 819 820 821 822
std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

823 824
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
825 826 827 828 829
  PADDLE_ENFORCE_NOT_NULL(
      executor_->scope()->FindVar(name),
      platform::errors::PreconditionNotMet(
          "The variable named %s is not found in the scope of the exector.",
          name));
830 831 832 833
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
834 835
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
836
  } else if (platform::is_xpu_place(place_)) {
837 838 839 840 841 842 843 844 845 846 847
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
      auto xpu_place = BOOST_GET_CONST(platform::XPUPlace, place_);
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
N
nhzlx 已提交
848
  } else {
849
    auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place_);
N
nhzlx 已提交
850 851
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
852 853 854 855 856
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
857 858 859 860 861
  PADDLE_ENFORCE_NOT_NULL(
      executor_->scope()->FindVar(name),
      platform::errors::PreconditionNotMet(
          "he variable named %s is not found in the scope of the exector.",
          name));
862 863 864 865
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
866 867
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
868
  } else if (platform::is_xpu_place(place_)) {
869 870 871 872 873 874 875 876 877 878 879
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
      auto xpu_place = BOOST_GET_CONST(platform::XPUPlace, place_);
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
N
nhzlx 已提交
880
  } else {
881
    auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place_);
N
nhzlx 已提交
882 883
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
884 885 886 887
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
888
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
W
Wilber 已提交
889 890 891 892 893 894 895 896 897 898 899 900
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) {
    std::vector<std::vector<int>> shape_vector;
    auto names = GetInputNames();
    for (size_t i = 0; i < names.size(); ++i) {
      auto in_tensor = GetInputTensor(names[i]);
      shape_vector.emplace_back(in_tensor->shape());
    }
    MkldnnPreSet(shape_vector);
  }
#endif

901
  executor_->Run();
Y
Yan Chunwei 已提交
902
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
903
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
904
  tensor_array_batch_cleaner_.ResetTensorArray();
905 906 907 908

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
W
Wilber 已提交
909 910 911
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
912
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
913 914 915 916 917
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
#endif
918 919 920 921 922
  return true;
}

bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
923
  std::string filename;
924 925 926
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
  } else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
927 928 929
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
930
    filename = config_.prog_file();
931
  } else {
932
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
933 934 935 936
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
937
    LOG(ERROR) << string::Sprintf(
938 939
        "not valid model path '%s' or program path '%s'.", config_.model_dir(),
        config_.params_file());
940 941
    return false;
  }
942 943 944

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
945
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
946 947 948
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
949 950 951 952 953
    PADDLE_ENFORCE_EQ(
        static_cast<bool>(fin.is_open()), true,
        platform::errors::NotFound(
            "Cannot open file %s, please confirm whether the file is normal.",
            filename));
T
Tao Luo 已提交
954 955 956 957 958 959 960 961
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
962
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
963
  }
964 965 966 967 968 969
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
970 971
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
T
Tao Luo 已提交
972

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

993
      if (!config_.params_file().empty()) {
994 995 996 997 998 999
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
1000
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
1001 1002 1003 1004 1005
        op->CheckAttrs();
      }
    }
  }

1006
  if (!config_.params_file().empty()) {
1007 1008 1009 1010 1011 1012
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
1013
    op->SetAttr("file_path", {config_.params_file()});
1014 1015 1016 1017
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
1018
  framework::NaiveExecutor e(place_);
1019 1020 1021 1022
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

1023 1024
  return true;
}
1025

1026 1027 1028 1029 1030
uint64_t AnalysisPredictor::TryShrinkMemory() {
  ClearIntermediateTensor();
  return paddle::memory::Release(place_);
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
void AnalysisPredictor::ClearIntermediateTensor() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
  const auto &global_block = inference_program_->MutableBlock(0);
  for (auto *var : global_block->AllVars()) {
    if (!IsPersistable(var)) {
      const std::string name = var->Name();
      auto *variable = executor_->scope()->FindVar(name);
      if (variable != nullptr && variable->IsType<framework::LoDTensor>() &&
          name != "feed" && name != "fetch") {
        VLOG(3) << "Clear Intermediate Tensor: " << name;
        auto *t = variable->GetMutable<framework::LoDTensor>();
        t->clear();
      }
    }
  }
}

N
nhzlx 已提交
1050
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
1051
bool AnalysisPredictor::SaveTrtCalibToDisk() {
1052 1053 1054
  PADDLE_ENFORCE_EQ(config_.tensorrt_engine_enabled(), true,
                    platform::errors::PreconditionNotMet(
                        "This func can be invoked only in trt mode"));
N
nhzlx 已提交
1055 1056 1057
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
1058 1059
      std::string engine_name = BOOST_GET_CONST(
          std::string, op_desc->GetAttr("calibration_engine_key"));
N
nhzlx 已提交
1060
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
1061 1062 1063 1064
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
1065 1066
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
1067
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
1068
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
1069 1070
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
1071 1072 1073
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
1074

N
nhzlx 已提交
1075
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
1076 1077 1078
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
1079

N
nhzlx 已提交
1080 1081 1082 1083 1084
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
1085
      std::string calibration_table_data_path =
N
nhzlx 已提交
1086 1087 1088 1089
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
1090 1091 1092 1093 1094

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
1095 1096 1097 1098
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
1099
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
1100 1101
  return true;
}
N
nhzlx 已提交
1102
#endif
N
nhzlx 已提交
1103

1104
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
1105
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
1106
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
1107 1108
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
1109 1110
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
1111
#endif
1112
  if (config_.with_profile_) {
1113 1114 1115 1116 1117 1118
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
1119

1120 1121 1122 1123 1124 1125
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif
1126 1127

  memory::Release(place_);
1128 1129
}

1130
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
Y
Yan Chunwei 已提交
1131
  std::lock_guard<std::mutex> lk(clone_mutex_);
1132 1133 1134 1135 1136
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
  return std::unique_ptr<PaddlePredictor>(x);
}

1137
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
1138 1139 1140
  return inference_program_->Proto()->SerializeAsString();
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

Y
Yan Chunwei 已提交
1180
template <>
1181 1182
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
W
Wilber 已提交
1183
  LOG(WARNING) << "Deprecated. Please use CreatePredictor instead.";
1184 1185
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
1186 1187
}

1188
}  // namespace paddle
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
1199 1200
USE_TRT_CONVERTER(transpose);
USE_TRT_CONVERTER(flatten);
1201
USE_TRT_CONVERTER(matmul);
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
1213 1214
USE_TRT_CONVERTER(hard_sigmoid);
USE_TRT_CONVERTER(hard_swish);
1215
USE_TRT_CONVERTER(split);
1216 1217
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
1218
USE_TRT_CONVERTER(leaky_relu);
1219 1220
USE_TRT_CONVERTER(shuffle_channel);
USE_TRT_CONVERTER(swish);
1221
USE_TRT_CONVERTER(group_norm);
1222
USE_TRT_CONVERTER(instance_norm);
P
Pei Yang 已提交
1223 1224 1225
USE_TRT_CONVERTER(layer_norm);
USE_TRT_CONVERTER(gelu);
USE_TRT_CONVERTER(multihead_matmul);
1226 1227
USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm);
USE_TRT_CONVERTER(skip_layernorm);
1228
USE_TRT_CONVERTER(slice);
1229
USE_TRT_CONVERTER(scale);
1230
USE_TRT_CONVERTER(stack);
P
Pei Yang 已提交
1231
USE_TRT_CONVERTER(clip);
1232
USE_TRT_CONVERTER(gather);
1233
USE_TRT_CONVERTER(anchor_generator);
Z
zlsh80826 已提交
1234
USE_TRT_CONVERTER(yolo_box);
1235
USE_TRT_CONVERTER(roi_align);
1236
USE_TRT_CONVERTER(affine_channel);
Z
zlsh80826 已提交
1237
USE_TRT_CONVERTER(multiclass_nms);
1238
USE_TRT_CONVERTER(nearest_interp);
1239 1240
USE_TRT_CONVERTER(reduce_sum);
USE_TRT_CONVERTER(gather_nd);
1241
USE_TRT_CONVERTER(reshape);
1242
#endif
W
Wilber 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

namespace paddle_infer {

Predictor::Predictor(const Config &config) {
  const_cast<Config *>(&config)->SwitchUseFeedFetchOps(false);
  // The second parameter indicates that the discard log is not printed
  predictor_ = paddle::CreatePaddlePredictor<
      Config, paddle::PaddleEngineKind::kAnalysis>(config);
}

std::vector<std::string> Predictor::GetInputNames() {
  return predictor_->GetInputNames();
}

std::unique_ptr<Tensor> Predictor::GetInputHandle(const std::string &name) {
1258
  return predictor_->GetInputTensor(name);
W
Wilber 已提交
1259 1260 1261 1262 1263 1264 1265
}

std::vector<std::string> Predictor::GetOutputNames() {
  return predictor_->GetOutputNames();
}

std::unique_ptr<Tensor> Predictor::GetOutputHandle(const std::string &name) {
1266
  return predictor_->GetOutputTensor(name);
W
Wilber 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
}

bool Predictor::Run() { return predictor_->ZeroCopyRun(); }

std::unique_ptr<Predictor> Predictor::Clone() {
  auto analysis_pred = predictor_->Clone();
  std::unique_ptr<Predictor> pred(new Predictor(std::move(analysis_pred)));
  return pred;
}

void Predictor::ClearIntermediateTensor() {
  predictor_->ClearIntermediateTensor();
}

1281 1282
uint64_t Predictor::TryShrinkMemory() { return predictor_->TryShrinkMemory(); }

W
Wilber 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
int GetNumBytesOfDataType(DataType dtype) {
  switch (dtype) {
    case DataType::FLOAT32:
      return sizeof(float);
    case DataType::INT64:
      return sizeof(int64_t);
    case DataType::INT32:
      return sizeof(int32_t);
    case DataType::UINT8:
      return sizeof(uint8_t);
    default:
      assert(false);
      return -1;
  }
}

std::string GetVersion() { return paddle::get_version(); }

std::string UpdateDllFlag(const char *name, const char *value) {
  return paddle::UpdateDllFlag(name, value);
}

}  // namespace paddle_infer

namespace paddle_infer {
std::shared_ptr<Predictor> CreatePredictor(const Config &config) {  // NOLINT
  std::shared_ptr<Predictor> predictor(new Predictor(config));
  return predictor;
}

namespace services {
PredictorPool::PredictorPool(const Config &config, size_t size) {
  PADDLE_ENFORCE_GE(
      size, 1UL,
      paddle::platform::errors::InvalidArgument(
          "The predictor pool size should be greater than 1, but it's (%d)",
          size));
  Config copy_config(config);
  main_pred_.reset(new Predictor(config));
  for (size_t i = 0; i < size - 1; i++) {
    if (config.tensorrt_engine_enabled()) {
      Config config_tmp(copy_config);
      preds_.push_back(
          std::move(std::unique_ptr<Predictor>(new Predictor(config_tmp))));
    } else {
      preds_.push_back(std::move(main_pred_->Clone()));
    }
  }
}

Predictor *PredictorPool::Retrive(size_t idx) {
  PADDLE_ENFORCE_LT(
      idx, preds_.size() + 1,
      paddle::platform::errors::InvalidArgument(
          "There are (%d) predictors in the pool, but the idx is (%d)", idx,
          preds_.size() + 1));
  if (idx == 0) {
    return main_pred_.get();
  }
  return preds_[idx - 1].get();
}
}  // namespace services
}  // namespace paddle_infer