backward.cc 9.3 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "paddle/framework/backward.h"
D
dongzhihong 已提交
16

D
dongzhihong 已提交
17
#include <list>
Y
Yu Yang 已提交
18 19
#include <memory>

20
#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
21
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
22
#include "paddle/operators/recurrent_op.h"
Y
Yu Yang 已提交
23 24 25 26

namespace paddle {
namespace framework {

Y
Yu Yang 已提交
27
template <typename Map, typename T>
Q
qiaolongfei 已提交
28
static void ForEachVarName(const Map& names, T callback) {
Y
Yu Yang 已提交
29
  for (auto& name : names) {
Y
Yu Yang 已提交
30
    for (auto& n : name.second) {
31
      if (callback(n)) return;
Y
Yu Yang 已提交
32 33
    }
  }
Y
Yu Yang 已提交
34 35
}

Y
Yan Chunwei 已提交
36
// return whether all the names + suffixes in the set
Y
Yu Yang 已提交
37
static bool AllInSet(
Y
Yu Yang 已提交
38
    const std::map<std::string, std::vector<std::string>>& names,
Y
Yu Yang 已提交
39
    const std::string& suffix, const std::unordered_set<std::string>& set) {
40 41 42 43
  bool all_in_set = true;
  ForEachVarName(names, [&all_in_set, &set, &suffix](const std::string& n) {
    all_in_set = set.find(n + suffix) != set.end();
    return !all_in_set;
Y
Yu Yang 已提交
44
  });
45
  return all_in_set;
Y
Yu Yang 已提交
46 47
}

Y
Yu Yang 已提交
48 49
static std::unique_ptr<OperatorBase> NOP() {
  auto net_op = new operators::NetOp();
Q
qiaolongfei 已提交
50
  net_op->SetType("@NOP@");
Y
Yu Yang 已提交
51
  net_op->CompleteAddOp();
Y
Yu Yang 已提交
52
  return std::unique_ptr<OperatorBase>(net_op);
Y
Yu Yang 已提交
53 54
}

Y
Yan Chunwei 已提交
55
//  Get backward operator from a forward operator, a recursive implementation.
Y
Yu Yang 已提交
56 57 58
//
//  no_grad_names the gradient variable names without gradient calculating.
//
59 60 61
//  uniq_id is a unique index used inside recursively calling
//  BackwardRecursive. use `uid = uniq_id++;` to get the unique index, and
//  pass `uniq_id` through recursive calling.
Y
Yu Yang 已提交
62
//
Y
Yan Chunwei 已提交
63 64
//  returns The backward operator. In a simple situation, it may be a simple
//  operator, in a complex situation, it maybe a NetOp.
Y
Yu Yang 已提交
65 66
//
//  See Backward.h for details
Y
Yu Yang 已提交
67
static std::unique_ptr<OperatorBase> BackwardRecursive(
Y
Yu Yang 已提交
68 69
    const OperatorBase& forwardOp,
    std::unordered_set<std::string>& no_grad_names, size_t& uniq_id) {
Y
Yu Yang 已提交
70 71
  //  If all input gradients of forwarding operator do not need to calculate,
  //  just return an NOP. Not return null ptr because NOP does not take
Q
typo  
qiaolongfei 已提交
72
  //  too much time for calculation, but it is useful for simplifying logic.
73
  if (AllInSet(forwardOp.Inputs() /*names*/, kGradVarSuffix /*suffix*/,
Y
Yan Chunwei 已提交
74
               no_grad_names /*set*/)) {
Y
Yu Yang 已提交
75
    return NOP();
Y
Yu Yang 已提交
76 77
  }

78 79
  //  All output gradients of forwarding operator do not need to calculate.
  //  Then all input gradients cannot be computed at all, and we put them into
Y
Yu Yang 已提交
80
  //  `no_grad_names` set. Return an NOP.
Q
qiaolongfei 已提交
81
  if (AllInSet(forwardOp.Outputs() /*names*/, kGradVarSuffix /*suffix*/,
Y
Yan Chunwei 已提交
82
               no_grad_names /*set*/)) {
Q
qiaolongfei 已提交
83
    ForEachVarName(forwardOp.Inputs(),
Y
Yu Yang 已提交
84 85 86 87
                   [&no_grad_names](const std::string& name) -> bool {
                     no_grad_names.insert(GradVarName(name));
                     return false;
                   });
Y
Yu Yang 已提交
88
    return NOP();
Y
Yu Yang 已提交
89 90
  }

Y
Yu Yang 已提交
91
  // Returned gradient network
Y
Yu Yang 已提交
92
  auto net = std::unique_ptr<operators::NetOp>(new operators::NetOp());
Y
Yu Yang 已提交
93 94

  if (forwardOp.IsNetOp()) {
Y
Yu Yang 已提交
95
    // Because forwardOp is a net op, it can static_cast.
Y
Yan Chunwei 已提交
96
    auto& forwardNet = static_cast<const operators::NetOp&>(forwardOp);
Y
Yu Yang 已提交
97

98
    // Map from output gradient variable name to operator's indices in
Y
Yan Chunwei 已提交
99
    // backward net's ops_. That operator generates that variable.
Y
Yu Yang 已提交
100 101 102
    std::unordered_map<std::string, std::vector<size_t>> dup_output_ops;

    size_t local_op_id = 0;
Y
Yan Chunwei 已提交
103
    // reversely travel forwardNet and collect all duplicate outputs.
Y
Yu Yang 已提交
104
    for (auto it = forwardNet.ops_.rbegin(); it != forwardNet.ops_.rend();
Y
Yu Yang 已提交
105
         ++it, ++local_op_id) {
Y
Yu Yang 已提交
106
      auto& fwd = *it;
Y
Yu Yang 已提交
107
      auto bwd = BackwardRecursive(*fwd, no_grad_names, uniq_id);
Q
qiaolongfei 已提交
108
      ForEachVarName(bwd->Outputs(),
Y
Yu Yang 已提交
109 110 111 112
                     [&dup_output_ops, local_op_id](const std::string& out) {
                       dup_output_ops[out].emplace_back(local_op_id);
                       return false;
                     });
Y
Yu Yang 已提交
113
      net->AppendOp(std::move(bwd));
D
dongzhihong 已提交
114
    }
Y
Yu Yang 已提交
115
    // Get unique ID for this method.
D
dongzhihong 已提交
116
    auto uid = uniq_id++;
D
dongzhihong 已提交
117
    // TODO(dzh): more comment
Y
Yan Chunwei 已提交
118 119 120 121 122
    // multiple operators which have the same output (y for example) may
    // overwrite the same y variable when backward, special operations are token
    // to handle this case. For each duplicate output, rename it to an alias
    // (original name with a offset), append an `add` op for its operator,
    // and finally sum all the alias variable to the final output variable y.
Y
Yu Yang 已提交
123
    using Pos = std::pair<size_t, std::unique_ptr<OperatorBase>>;
Y
Yu Yang 已提交
124
    std::list<Pos> insert_position;
D
dongzhihong 已提交
125
    for (auto& dup_output_op : dup_output_ops) {
D
dongzhihong 已提交
126
      const std::string& name = dup_output_op.first;
Q
qijun 已提交
127 128 129
      // duplicate @Empty@ don't need to be added
      if (name == kEmptyVarName) continue;

D
dongzhihong 已提交
130
      auto& dup_op = dup_output_op.second;
Y
Yan Chunwei 已提交
131
      // no duplicate output
D
dongzhihong 已提交
132 133
      if (dup_op.size() == 1) continue;

Y
Yan Chunwei 已提交
134 135
      // process the duplicate outputs
      std::vector<std::string> dup_outputs;
D
dongzhihong 已提交
136
      for (size_t i = 0; i < dup_op.size(); ++i) {
Y
Yan Chunwei 已提交
137
        // rename each duplicate output to an alias
D
dongzhihong 已提交
138
        auto op_offset = dup_op[i];
D
dongzhihong 已提交
139 140 141
        dup_outputs.push_back(name + "@RENAME@" + std::to_string(uid) + "@" +
                              std::to_string(i));
        net->ops_[op_offset]->Rename(name, dup_outputs.back());
D
dongzhihong 已提交
142
      }
Y
Yan Chunwei 已提交
143
      // collect all the offset to append `add` op for each alias
D
dzhwinter 已提交
144 145 146
      //
      // one variable is shared between multiple operators.
      // insert add operator one by one, then add it to output
D
dongzhihong 已提交
147 148 149 150 151 152 153 154 155 156 157 158
      for (size_t output_idx = 0; output_idx < dup_outputs.size() - 1;
           ++output_idx) {
        auto insert_add_x = dup_outputs[output_idx];
        auto insert_add_y = dup_outputs[output_idx];
        auto insert_add_out = name + "@SHARED@" + std::to_string(output_idx);
        // first add op inserted
        if (output_idx == dup_outputs.size() - 2) {
          insert_add_out = name;
        }
        if (output_idx != 0) {
          insert_add_y = name + "@SHARED@" + std::to_string(output_idx - 1);
        }
D
dzhwinter 已提交
159 160 161
        insert_position.push_back(
            {dup_op.back(),
             OpRegistry::CreateOp(
D
dongzhihong 已提交
162 163
                 "add", {{"X", {insert_add_x}}, {"Y", {insert_add_y}}},
                 {{"Out", {insert_add_out}}}, {})});
D
dzhwinter 已提交
164
      }
D
dongzhihong 已提交
165
    }
Y
Yu Yang 已提交
166

Y
Yan Chunwei 已提交
167
    // make sure the inserted `add` ops follow the BFS order.
Y
Yu Yang 已提交
168
    insert_position.sort(
D
dongzhihong 已提交
169
        [](const Pos& l, const Pos& r) { return l.first > r.first; });
Y
Yu Yang 已提交
170 171

    for (auto& pos : insert_position) {
Y
Yu Yang 已提交
172
      net->InsertOp(pos.first + 1, std::move(pos.second));
D
dongzhihong 已提交
173
    }
Y
Yu Yang 已提交
174
  } else {
Y
Yu Yang 已提交
175
    std::unique_ptr<OperatorBase> grad_op(OpRegistry::CreateGradOp(forwardOp));
Y
Yu Yang 已提交
176

Y
Yu Yang 已提交
177 178
    ForEachVarName(grad_op->Inputs(), [&no_grad_names, &net, &grad_op](
                                          const std::string& grad_input) {
179
      if (no_grad_names.count(grad_input)) {
Y
Yu Yang 已提交
180
        // +1 for \0
181
        std::string prefix = grad_input.substr(
Y
Yu Yang 已提交
182
            0, grad_input.size() - sizeof(kGradVarSuffix) / sizeof(char) + 1);
Q
qiaolongfei 已提交
183
        grad_op->Rename(grad_input, prefix + kZeroVarSuffix);
Y
Yu Yang 已提交
184 185 186

        // If part of input gradient of that operator is not calculated, fill
        // zero variables to that input gradient.
D
dangqingqing 已提交
187 188
        net->AppendOp(OpRegistry::CreateOp("fill_zeros_like", {{"X", {prefix}}},
                                           {{"Y", {grad_input}}}, {}));
189
      }
Y
Yu Yang 已提交
190 191 192
      return false;
    });

Q
qiaolongfei 已提交
193 194
    ForEachVarName(grad_op->Outputs(),
                   [&no_grad_names, &grad_op](const std::string& grad_output) {
Y
Yu Yang 已提交
195
                     if (no_grad_names.count(grad_output)) {
Q
qiaolongfei 已提交
196
                       grad_op->Rename(grad_output, kEmptyVarName);
Y
Yu Yang 已提交
197 198 199
                     }
                     return false;
                   });
Y
Yu Yang 已提交
200

Y
Yan Chunwei 已提交
201
    // process recurrent gradient op as a special operator.
202
    if (forwardOp.Type() == "recurrent") {
Y
Yan Chunwei 已提交
203 204 205 206 207 208 209 210 211 212
      // NOTE clean up cycle call somewhere (RNN's stepnet constains itself), or
      // this will result in infinite loop.
      const auto& rnnop =
          *static_cast<const operators::RecurrentOp*>(&forwardOp);
      auto rnn_grad_op =
          static_cast<operators::RecurrentGradientOp*>(grad_op.get());
      const auto& stepnet_op =
          *static_cast<const OperatorBase*>(&rnnop.stepnet());
      // create stepnet's gradient op
      rnn_grad_op->set_stepnet(
Y
Yu Yang 已提交
213
          BackwardRecursive(stepnet_op, no_grad_names, uniq_id));
Y
Yan Chunwei 已提交
214 215
    }

Y
Yu Yang 已提交
216 217 218
    if (net->ops_.empty()) {  // Current no aux op is added to network
      return grad_op;
    }
Y
Yu Yang 已提交
219
    net->AppendOp(std::move(grad_op));
Y
Yu Yang 已提交
220
  }
Q
qiaolongfei 已提交
221
  net->SetType("@GENERATED_BACKWARD@");
Y
Yu Yang 已提交
222
  net->CompleteAddOp();
Y
Yu Yang 已提交
223 224 225
  return std::unique_ptr<OperatorBase>(
      static_cast<OperatorBase*>(net.release()));
}
Y
Yu Yang 已提交
226

Y
Yu Yang 已提交
227
// See header for comments
Y
Yu Yang 已提交
228
std::unique_ptr<OperatorBase> Backward(
Y
Yu Yang 已提交
229
    const OperatorBase& forwardOp,
Y
Yu Yang 已提交
230 231
    const std::unordered_set<std::string>& no_grad_vars) {
  std::unordered_set<std::string> no_grad_names;
Q
qijun 已提交
232
  no_grad_names.reserve(no_grad_vars.size() + 1);
Y
Yu Yang 已提交
233

234
  no_grad_names.insert(std::string(kEmptyVarName) + kGradVarSuffix);
235

Y
Yu Yang 已提交
236
  for (auto& name : no_grad_vars) {
237
    no_grad_names.insert(name + kGradVarSuffix);
Y
Yu Yang 已提交
238
  }
Y
Yu Yang 已提交
239
  size_t uid = 0;
Y
Yu Yang 已提交
240
  return BackwardRecursive(forwardOp, no_grad_names, uid);
Y
Yu Yang 已提交
241
}
Y
Yi Wang 已提交
242

Y
Yu Yang 已提交
243 244
}  // namespace framework
}  // namespace paddle