elementwise_add_op.cc 5.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
16

17 18
#include <memory>
#include <string>
19 20

#include "paddle/fluid/framework/op_version_registry.h"
W
Wu Yi 已提交
21
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
22 23 24 25

namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
template <typename T>
struct SameDimsElemwiseAdd<
    platform::CPUDeviceContext, T,
    typename std::enable_if<std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
    blas.VADD(x->numel(), x->data<T>(), y->data<T>(), z->data<T>());
  }
};

template <typename T>
struct SameDimsElemwiseAdd<
    platform::CPUDeviceContext, T,
    typename std::enable_if<!std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto eigen_x = framework::EigenVector<T>::Flatten(*x);
    auto eigen_y = framework::EigenVector<T>::Flatten(*y);
    auto eigen_z = framework::EigenVector<T>::Flatten(*z);
    auto &place = *ctx.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
    eigen_z.device(place) = eigen_x + eigen_y;
  }
};

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
class ElementwiseAddOpMaker : public ElementwiseOpMaker {
 protected:
  std::string GetName() const override { return "Add"; }
  std::string GetEquation() const override { return "Out = X + Y"; }

  void AddInputX() override {
    AddInput("X",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  void AddInputY() override {
    AddInput("Y",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  std::string GetOpFuntionality() const override {
    return "Add two tensors element-wise";
  }
};

H
hong 已提交
76 77
template <typename T>
class ElementwiseAddDoubleGradMaker : public framework::SingleGradOpMaker<T> {
78
 public:
H
hong 已提交
79
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
80 81

 protected:
82
  void Apply(GradOpPtr<T> op) const override {
83
    op->SetType("elementwise_add_grad_grad");
H
hong 已提交
84 85 86 87
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
88

H
hong 已提交
89
    op->SetAttrMap(this->Attrs());
90

H
hong 已提交
91
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
92 93 94 95 96 97
  }
};

}  // namespace operators
}  // namespace paddle

98
REGISTER_ELEMWISE_GRAD_MAKER(elementwise_add, Add);
99
REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(elementwise_add, Add);
100 101

namespace ops = paddle::operators;
H
hong 已提交
102
REGISTER_OPERATOR(
103 104
    elementwise_add_grad, ops::ElementwiseOpGrad,
    ops::ElementwiseGradOpInplaceInferer, ops::ElementwiseGradNoBufVarsInferer,
H
hong 已提交
105 106
    ops::ElementwiseAddDoubleGradMaker<paddle::framework::OpDesc>,
    ops::ElementwiseAddDoubleGradMaker<paddle::imperative::OpBase>);
107

108
REGISTER_OPERATOR(elementwise_add_grad_grad,
109
                  ops::ElementwiseOpDoubleGradWithoutDXDY,
110 111
                  ops::ElementwiseDoubleGradOpInplaceInferer,
                  ops::ElementwiseDoubleGradNoBufVarsInferer);
D
dzhwinter 已提交
112

G
gongweibao 已提交
113 114
REGISTER_OP_CPU_KERNEL(
    elementwise_add,
Q
QI JUN 已提交
115 116 117 118
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, int64_t>);
G
gongweibao 已提交
119 120
REGISTER_OP_CPU_KERNEL(
    elementwise_add_grad,
Q
QI JUN 已提交
121 122 123 124
    ops::ElementwiseAddGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseAddGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseAddGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseAddGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
125 126 127 128 129 130 131 132 133 134
REGISTER_OP_CPU_KERNEL(
    elementwise_add_grad_grad,
    ops::ElementwiseAddDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        float>,
    ops::ElementwiseAddDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        double>,
    ops::ElementwiseAddDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int>,
    ops::ElementwiseAddDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int64_t>);
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

// A specialization elementwise_add operator, used in gradient accumulation with
// inplace addto.
REGISTER_OPERATOR(
    grad_add, paddle::operators::ElementwiseOp,
    paddle::operators::ElementwiseAddOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OP_CPU_KERNEL(
    grad_add,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, int64_t>);