Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d6c85c96
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d6c85c96
编写于
9月 05, 2019
作者:
T
Tao Luo
提交者:
GitHub
9月 05, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
paddle::framework::vectorize() templatization (#19627)
test=develop
上级
3aaea4c5
变更
18
隐藏空白更改
内联
并排
Showing
18 changed file
with
42 addition
and
42 deletion
+42
-42
paddle/fluid/operators/controlflow/while_op.cc
paddle/fluid/operators/controlflow/while_op.cc
+1
-1
paddle/fluid/operators/conv_fusion_op.cu.cc
paddle/fluid/operators/conv_fusion_op.cu.cc
+3
-3
paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc
paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc
+6
-6
paddle/fluid/operators/fused/fusion_conv_inception_op.cu
paddle/fluid/operators/fused/fusion_conv_inception_op.cu
+4
-4
paddle/fluid/operators/grid_sampler_cudnn_op.cu.cc
paddle/fluid/operators/grid_sampler_cudnn_op.cu.cc
+5
-5
paddle/fluid/operators/math/softmax.cu
paddle/fluid/operators/math/softmax.cu
+2
-2
paddle/fluid/operators/nce_op.h
paddle/fluid/operators/nce_op.h
+1
-1
paddle/fluid/operators/pool_cudnn_op.cu.cc
paddle/fluid/operators/pool_cudnn_op.cu.cc
+4
-4
paddle/fluid/operators/prelu_op.cu
paddle/fluid/operators/prelu_op.cu
+2
-2
paddle/fluid/operators/random_crop_op.cc
paddle/fluid/operators/random_crop_op.cc
+1
-1
paddle/fluid/operators/recurrent_op.cc
paddle/fluid/operators/recurrent_op.cc
+1
-1
paddle/fluid/operators/reduce_ops/cub_reduce.h
paddle/fluid/operators/reduce_ops/cub_reduce.h
+1
-1
paddle/fluid/operators/rnn_memory_helper_op.cc
paddle/fluid/operators/rnn_memory_helper_op.cc
+1
-1
paddle/fluid/operators/sequence_ops/sequence_mask_op.cc
paddle/fluid/operators/sequence_ops/sequence_mask_op.cc
+1
-1
paddle/fluid/operators/sequence_ops/sequence_mask_op.h
paddle/fluid/operators/sequence_ops/sequence_mask_op.h
+2
-2
paddle/fluid/operators/sequence_ops/sequence_pad_op.cc
paddle/fluid/operators/sequence_ops/sequence_pad_op.cc
+1
-1
paddle/fluid/operators/slice_op.cu
paddle/fluid/operators/slice_op.cu
+2
-2
paddle/fluid/operators/squeeze_op.cc
paddle/fluid/operators/squeeze_op.cc
+4
-4
未找到文件。
paddle/fluid/operators/controlflow/while_op.cc
浏览文件 @
d6c85c96
...
...
@@ -281,7 +281,7 @@ class WhileGradOp : public framework::OperatorBase {
auto
&
inside_tensor
=
var
->
Get
<
framework
::
LoDTensor
>
();
framework
::
AttributeMap
attrs
;
attrs
[
"dtype"
]
=
inside_tensor
.
type
();
attrs
[
"shape"
]
=
framework
::
vectorize
2int
(
inside_tensor
.
dims
());
attrs
[
"shape"
]
=
framework
::
vectorize
<
int
>
(
inside_tensor
.
dims
());
attrs
[
"value"
]
=
0.0
f
;
auto
var_name
=
pg_ig_names
[
param_id
];
...
...
paddle/fluid/operators/conv_fusion_op.cu.cc
浏览文件 @
d6c85c96
...
...
@@ -79,11 +79,11 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
cudnn_conv_desc
,
groups
));
cudnnTensorDescriptor_t
cudnn_input_desc
=
input_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize
2int
(
input
->
dims
()));
layout
,
framework
::
vectorize
<
int
>
(
input
->
dims
()));
cudnnTensorDescriptor_t
cudnn_output_desc
=
output_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize
2int
(
output
->
dims
()));
layout
,
framework
::
vectorize
<
int
>
(
output
->
dims
()));
cudnnFilterDescriptor_t
cudnn_filter_desc
=
filter_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize
2int
(
filter
->
dims
()));
layout
,
framework
::
vectorize
<
int
>
(
filter
->
dims
()));
// Now only support NCHW
std
::
vector
<
int
>
bias_dim
=
{
1
,
static_cast
<
int
>
(
output
->
dims
()[
1
]),
1
,
1
};
cudnnTensorDescriptor_t
cudnn_bias_desc
=
...
...
paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc
浏览文件 @
d6c85c96
...
...
@@ -64,13 +64,13 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
// (N, M, H, W) or (N, M, D, H, W)
cudnnTensorDescriptor_t
cudnn_input_desc
=
input_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize
2int
(
input
->
dims
()),
groups
);
layout
,
framework
::
vectorize
<
int
>
(
input
->
dims
()),
groups
);
// (N, C, O_h, O_w) or (N, C, O_d, O_h, O_w)
cudnnTensorDescriptor_t
cudnn_output_desc
=
output_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize
2int
(
output
->
dims
()),
groups
);
layout
,
framework
::
vectorize
<
int
>
(
output
->
dims
()),
groups
);
// (M, C, K_h, K_w) or (M, C, K_d, K_h, K_w)
cudnnFilterDescriptor_t
cudnn_filter_desc
=
filter_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize
2int
(
filter
->
dims
()),
groups
);
layout
,
framework
::
vectorize
<
int
>
(
filter
->
dims
()),
groups
);
cudnnConvolutionDescriptor_t
cudnn_conv_desc
=
conv_desc
.
descriptor
<
T
>
(
paddings
,
strides
,
dilations
);
...
...
@@ -148,13 +148,13 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
// Input: (N, M, H, W) or (N, M, D, H, W)
cudnnTensorDescriptor_t
cudnn_input_desc
=
input_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize
2int
(
input
->
dims
()),
groups
);
layout
,
framework
::
vectorize
<
int
>
(
input
->
dims
()),
groups
);
// Output: (N, C, O_h, O_w) or (N, C, O_d, O_h, O_w)
cudnnTensorDescriptor_t
cudnn_output_desc
=
output_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize
2int
(
output_grad
->
dims
()),
groups
);
layout
,
framework
::
vectorize
<
int
>
(
output_grad
->
dims
()),
groups
);
// Filter (M, C, K_h, K_w) or (M, C, K_d K_h, K_w)
cudnnFilterDescriptor_t
cudnn_filter_desc
=
filter_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize
2int
(
filter
->
dims
()),
groups
);
layout
,
framework
::
vectorize
<
int
>
(
filter
->
dims
()),
groups
);
cudnnConvolutionDescriptor_t
cudnn_conv_desc
=
conv_desc
.
descriptor
<
T
>
(
paddings
,
strides
,
dilations
);
...
...
paddle/fluid/operators/fused/fusion_conv_inception_op.cu
浏览文件 @
d6c85c96
...
...
@@ -61,7 +61,7 @@ class CUDNNConvInceptionFusionOpKernel : public framework::OpKernel<T> {
T
*
temp_data
=
temp_outs
[
0
]
->
mutable_data
<
T
>
(
input
->
dims
(),
ctx
.
GetPlace
());
DataLayout
layout
=
DataLayout
::
kNCHW
;
std
::
vector
<
int
>
in_dim
=
framework
::
vectorize
2int
(
input
->
dims
());
std
::
vector
<
int
>
in_dim
=
framework
::
vectorize
<
int
>
(
input
->
dims
());
// ------------------- cudnn descriptors ---------------------
PoolingMode
pooling_mode
;
...
...
@@ -83,9 +83,9 @@ class CUDNNConvInceptionFusionOpKernel : public framework::OpKernel<T> {
pool_desc
.
descriptor
(
pooling_mode
,
k3x3
,
k1x1
,
k1x1
);
cudnnTensorDescriptor_t
cudnn_input_desc
=
input_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize
2int
(
input
->
dims
()));
layout
,
framework
::
vectorize
<
int
>
(
input
->
dims
()));
cudnnTensorDescriptor_t
pool_out_desc
=
out_pool_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize
2int
(
input
->
dims
()));
layout
,
framework
::
vectorize
<
int
>
(
input
->
dims
()));
cudnnDataType_t
cudnn_dtype
=
CudnnDataType
<
T
>::
type
;
cudnnTensorDescriptor_t
*
out_desc
=
new
cudnnTensorDescriptor_t
[
4
];
...
...
@@ -126,7 +126,7 @@ class CUDNNConvInceptionFusionOpKernel : public framework::OpKernel<T> {
:
CUDNN_DATA_FLOAT
;
for
(
int
i
=
0
;
i
<
4
;
++
i
)
{
filter_dims
.
push_back
(
framework
::
vectorize
2int
(
filters
[
i
]
->
dims
()));
filter_dims
.
push_back
(
framework
::
vectorize
<
int
>
(
filters
[
i
]
->
dims
()));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetFilterNdDescriptor
(
filter_desc
[
i
],
cudnn_dtype
,
format
,
4
,
filter_dims
[
i
].
data
()));
bias_dims
.
push_back
({
1
,
filter_dims
[
i
][
0
],
1
,
1
});
...
...
paddle/fluid/operators/grid_sampler_cudnn_op.cu.cc
浏览文件 @
d6c85c96
...
...
@@ -55,9 +55,9 @@ class CUDNNGridSampleOpKernel : public framework::OpKernel<T> {
ScopedTensorDescriptor
input_desc
;
ScopedTensorDescriptor
output_desc
;
cudnnTensorDescriptor_t
cudnn_input_desc
=
input_desc
.
descriptor
<
T
>
(
DataLayout
::
kNCHW
,
framework
::
vectorize
2int
(
input
->
dims
()));
DataLayout
::
kNCHW
,
framework
::
vectorize
<
int
>
(
input
->
dims
()));
cudnnTensorDescriptor_t
cudnn_output_desc
=
output_desc
.
descriptor
<
T
>
(
DataLayout
::
kNCHW
,
framework
::
vectorize
2int
(
output
->
dims
()));
DataLayout
::
kNCHW
,
framework
::
vectorize
<
int
>
(
output
->
dims
()));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSpatialTfSamplerForward
(
handle
,
cudnn_st_desc
,
CudnnDataType
<
T
>::
kOne
(),
cudnn_input_desc
,
...
...
@@ -103,13 +103,13 @@ class CUDNNGridSampleGradOpKernel : public framework::OpKernel<T> {
ScopedTensorDescriptor
input_grad_desc
;
ScopedTensorDescriptor
output_grad_desc
;
cudnnTensorDescriptor_t
cudnn_input_desc
=
input_desc
.
descriptor
<
T
>
(
DataLayout
::
kNCHW
,
framework
::
vectorize
2int
(
input
->
dims
()));
DataLayout
::
kNCHW
,
framework
::
vectorize
<
int
>
(
input
->
dims
()));
cudnnTensorDescriptor_t
cudnn_input_grad_desc
=
input_grad_desc
.
descriptor
<
T
>
(
DataLayout
::
kNCHW
,
framework
::
vectorize
2int
(
input_grad
->
dims
()));
DataLayout
::
kNCHW
,
framework
::
vectorize
<
int
>
(
input_grad
->
dims
()));
cudnnTensorDescriptor_t
cudnn_output_grad_desc
=
output_grad_desc
.
descriptor
<
T
>
(
DataLayout
::
kNCHW
,
framework
::
vectorize
2int
(
output_grad
->
dims
()));
DataLayout
::
kNCHW
,
framework
::
vectorize
<
int
>
(
output_grad
->
dims
()));
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSpatialTfSamplerBackward
(
handle
,
cudnn_st_dest
,
CudnnDataType
<
T
>::
kOne
(),
cudnn_input_desc
,
...
...
paddle/fluid/operators/math/softmax.cu
浏览文件 @
d6c85c96
...
...
@@ -35,7 +35,7 @@ void SoftmaxCUDNNFunctor<T>::operator()(
// ------------------- cudnn descriptors ---------------------
ScopedTensorDescriptor
xDesc
;
ScopedTensorDescriptor
yDesc
;
std
::
vector
<
int
>
cudnn_tensor_dims
=
framework
::
vectorize
2int
(
X
->
dims
());
std
::
vector
<
int
>
cudnn_tensor_dims
=
framework
::
vectorize
<
int
>
(
X
->
dims
());
DataLayout
layout
=
DataLayout
::
kNCHW
;
if
(
cudnn_tensor_dims
.
size
()
==
5
)
{
layout
=
DataLayout
::
kNCDHW
;
...
...
@@ -64,7 +64,7 @@ void SoftmaxGradCUDNNFunctor<T>::operator()(
ScopedTensorDescriptor
yDesc
;
ScopedTensorDescriptor
dyDesc
;
ScopedTensorDescriptor
dxDesc
;
std
::
vector
<
int
>
cudnn_tensor_dims
=
framework
::
vectorize
2int
(
Y
->
dims
());
std
::
vector
<
int
>
cudnn_tensor_dims
=
framework
::
vectorize
<
int
>
(
Y
->
dims
());
DataLayout
layout
=
DataLayout
::
kNCHW
;
if
(
cudnn_tensor_dims
.
size
()
==
5
)
{
layout
=
DataLayout
::
kNCDHW
;
...
...
paddle/fluid/operators/nce_op.h
浏览文件 @
d6c85c96
...
...
@@ -186,7 +186,7 @@ class NCEKernel : public framework::OpKernel<T> {
std
::
memcpy
(
x_tensor
->
data
<
int64_t
>
(),
labels
.
data
(),
labels
.
size
()
*
sizeof
(
int64_t
));
std
::
vector
<
int
>
w_dims
=
paddle
::
framework
::
vectorize
2int
(
std
::
vector
<
int
>
w_dims
=
paddle
::
framework
::
vectorize
<
int
>
(
context
.
Input
<
Tensor
>
(
"Weight"
)
->
dims
());
w_dims
[
0
]
=
static_cast
<
int
>
(
labels
.
size
());
...
...
paddle/fluid/operators/pool_cudnn_op.cu.cc
浏览文件 @
d6c85c96
...
...
@@ -65,9 +65,9 @@ class PoolCUDNNOpKernel : public framework::OpKernel<T> {
}
cudnnTensorDescriptor_t
cudnn_input_desc
=
input_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize
2int
(
input
->
dims
()));
layout
,
framework
::
vectorize
<
int
>
(
input
->
dims
()));
cudnnTensorDescriptor_t
cudnn_output_desc
=
output_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize
2int
(
output
->
dims
()));
layout
,
framework
::
vectorize
<
int
>
(
output
->
dims
()));
PoolingMode
pooling_mode
;
if
(
pooling_type
==
"max"
)
{
...
...
@@ -132,9 +132,9 @@ class PoolCUDNNGradOpKernel : public framework::OpKernel<T> {
}
cudnnTensorDescriptor_t
cudnn_input_desc
=
input_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize
2int
(
input
->
dims
()));
layout
,
framework
::
vectorize
<
int
>
(
input
->
dims
()));
cudnnTensorDescriptor_t
cudnn_output_desc
=
output_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize
2int
(
output
->
dims
()));
layout
,
framework
::
vectorize
<
int
>
(
output
->
dims
()));
PoolingMode
pooling_mode
;
if
(
pooling_type
==
"max"
)
{
...
...
paddle/fluid/operators/prelu_op.cu
浏览文件 @
d6c85c96
...
...
@@ -41,7 +41,7 @@ class CUDAPReluKernel : public framework::OpKernel<T> {
int
numel
=
x
->
numel
();
auto
dim
=
x
->
dims
();
std
::
vector
<
int
>
input_shape
=
framework
::
vectorize
2int
(
dim
);
std
::
vector
<
int
>
input_shape
=
framework
::
vectorize
<
int
>
(
dim
);
if
(
mode
==
"channel"
)
{
math
::
PreluChannelWiseDirectCUDAFunctor
<
T
>
prelu_channel_wise
;
...
...
@@ -157,7 +157,7 @@ class CUDAPReluGradKernel : public framework::OpKernel<T> {
int
numel
=
x
->
numel
();
auto
dim
=
x
->
dims
();
std
::
vector
<
int
>
input_shape
=
framework
::
vectorize
2int
(
dim
);
std
::
vector
<
int
>
input_shape
=
framework
::
vectorize
<
int
>
(
dim
);
auto
stream
=
context
.
cuda_device_context
().
stream
();
T
*
dalpha_tmp_ptr
;
...
...
paddle/fluid/operators/random_crop_op.cc
浏览文件 @
d6c85c96
...
...
@@ -56,7 +56,7 @@ class RandomCropOpInferShape : public framework::InferShapeBase {
auto
shape
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"shape"
);
auto
x_dim
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_GT
(
x_dim
.
size
(),
static_cast
<
int64_t
>
(
shape
.
size
()));
auto
out_dim
=
framework
::
vectorize
2int
(
x_dim
);
auto
out_dim
=
framework
::
vectorize
<
int
>
(
x_dim
);
for
(
size_t
i
=
1
;
i
<=
shape
.
size
();
++
i
)
{
size_t
x_i
=
x_dim
.
size
()
-
i
;
size_t
shape_i
=
shape
.
size
()
-
i
;
...
...
paddle/fluid/operators/recurrent_op.cc
浏览文件 @
d6c85c96
...
...
@@ -395,7 +395,7 @@ void RecurrentGradOp::RunImpl(const framework::Scope &scope,
cur_scope
.
FindVar
(
inside_grad_name
)
->
Get
<
framework
::
LoDTensor
>
();
framework
::
AttributeMap
attrs
;
attrs
[
"dtype"
]
=
inside_tensor
.
type
();
attrs
[
"shape"
]
=
framework
::
vectorize
2int
(
inside_tensor
.
dims
());
attrs
[
"shape"
]
=
framework
::
vectorize
<
int
>
(
inside_tensor
.
dims
());
attrs
[
"value"
]
=
0.0
f
;
auto
zero_op
=
framework
::
OpRegistry
::
CreateOp
(
...
...
paddle/fluid/operators/reduce_ops/cub_reduce.h
浏览文件 @
d6c85c96
...
...
@@ -251,7 +251,7 @@ void TensorReduce(const framework::Tensor& x, framework::Tensor* y,
std
::
vector
<
int
>
origin_reduce_dims
,
const
Ty
&
init
,
const
ReduceOp
&
reducer
,
const
TransformOp
&
transformer
,
cudaStream_t
stream
)
{
auto
x_dim
=
framework
::
vectorize
2int
(
x
.
dims
());
auto
x_dim
=
framework
::
vectorize
<
int
>
(
x
.
dims
());
std
::
vector
<
int
>
new_x_dim
,
new_reduce_dims
;
int
is_reduced
=
0
;
for
(
auto
e
:
origin_reduce_dims
)
{
...
...
paddle/fluid/operators/rnn_memory_helper_op.cc
浏览文件 @
d6c85c96
...
...
@@ -107,7 +107,7 @@ class RNNMemoryHelperGradOp : public framework::OperatorBase {
framework
::
AttributeMap
attrs
;
attrs
[
"dtype"
]
=
in_var_tensor
.
type
();
attrs
[
"shape"
]
=
framework
::
vectorize
2int
(
in_var_tensor
.
dims
());
attrs
[
"shape"
]
=
framework
::
vectorize
<
int
>
(
in_var_tensor
.
dims
());
attrs
[
"value"
]
=
0.0
f
;
auto
zero_op
=
framework
::
OpRegistry
::
CreateOp
(
...
...
paddle/fluid/operators/sequence_ops/sequence_mask_op.cc
浏览文件 @
d6c85c96
...
...
@@ -27,7 +27,7 @@ class SequenceMaskOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Y"
),
"Output(Y) must exist"
);
int
maxlen
=
ctx
->
Attrs
().
Get
<
int
>
(
"maxlen"
);
auto
dim
=
framework
::
vectorize
2int
(
ctx
->
GetInputDim
(
"X"
));
auto
dim
=
framework
::
vectorize
<
int
>
(
ctx
->
GetInputDim
(
"X"
));
if
(
ctx
->
HasInputs
(
"MaxLenTensor"
))
{
dim
.
push_back
(
-
1
);
...
...
paddle/fluid/operators/sequence_ops/sequence_mask_op.h
浏览文件 @
d6c85c96
...
...
@@ -89,7 +89,7 @@ class SequenceMaskKernel : public framework::OpKernel<Tx> {
maxlen
=
*
max_len_tensor
->
data
<
int32_t
>
();
}
auto
y_dim
=
framework
::
vectorize
2int
(
x
->
dims
());
auto
y_dim
=
framework
::
vectorize
<
int
>
(
x
->
dims
());
y_dim
.
push_back
(
maxlen
);
y
->
Resize
(
framework
::
make_ddim
(
y_dim
));
...
...
@@ -110,7 +110,7 @@ class SequenceMaskKernel : public framework::OpKernel<Tx> {
#else
maxlen
=
static_cast
<
int
>
(
*
std
::
max_element
(
x_data
,
x_data
+
x_numel
));
#endif
auto
y_dim
=
framework
::
vectorize
2int
(
x
->
dims
());
auto
y_dim
=
framework
::
vectorize
<
int
>
(
x
->
dims
());
y_dim
.
push_back
(
maxlen
);
y
->
Resize
(
framework
::
make_ddim
(
y_dim
));
}
...
...
paddle/fluid/operators/sequence_ops/sequence_pad_op.cc
浏览文件 @
d6c85c96
...
...
@@ -81,7 +81,7 @@ class SequencePadOp : public framework::OperatorWithKernel {
std
::
vector
<
int
>
out_dims_vec
{
out_dim_0
,
padded_length
};
std
::
vector
<
int
>
len_dims_vec
{
out_dim_0
,
1
};
auto
time_step_dims_vec
=
framework
::
vectorize
2int
(
time_step_dims
);
auto
time_step_dims_vec
=
framework
::
vectorize
<
int
>
(
time_step_dims
);
out_dims_vec
.
insert
(
out_dims_vec
.
end
(),
time_step_dims_vec
.
begin
(),
time_step_dims_vec
.
end
());
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
out_dims_vec
));
...
...
paddle/fluid/operators/slice_op.cu
浏览文件 @
d6c85c96
...
...
@@ -84,9 +84,9 @@ class SliceGradKernel<paddle::platform::CUDADeviceContext,
dim3
threads
(
PADDLE_CUDA_NUM_THREADS
);
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
auto
out_shape
=
framework
::
vectorize
2int
(
out_dims
);
auto
out_shape
=
framework
::
vectorize
<
int
>
(
out_dims
);
thrust
::
device_vector
<
int
>
out_dims_vec
(
out_shape
.
begin
(),
out_shape
.
end
());
auto
in_shape
=
framework
::
vectorize
2int
(
in_dims
);
auto
in_shape
=
framework
::
vectorize
<
int
>
(
in_dims
);
thrust
::
device_vector
<
int
>
in_dims_vec
(
in_shape
.
begin
(),
in_shape
.
end
());
thrust
::
device_vector
<
int
>
offsets_vec
(
offsets
.
begin
(),
offsets
.
end
());
const
int
*
out_dims_ptr
=
thrust
::
raw_pointer_cast
(
out_dims_vec
.
data
());
...
...
paddle/fluid/operators/squeeze_op.cc
浏览文件 @
d6c85c96
...
...
@@ -111,7 +111,7 @@ class SqueezeOp : public framework::OperatorBase {
auto
out_dims
=
SqueezeOpInferShape
::
GetOutputShape
(
axes
,
x_dims
,
true
);
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize
2int
(
out_dims
);
attrs
[
"shape"
]
=
framework
::
vectorize
<
int
>
(
out_dims
);
// Invoke Reshape Op
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape"
,
{{
"X"
,
{
Input
(
"X"
)}},
{
"Shape"
,
{}}},
...
...
@@ -177,7 +177,7 @@ class SqueezeGradOp : public framework::OperatorBase {
auto
dout_name
=
Input
(
framework
::
GradVarName
(
"Out"
));
auto
x_dims
=
scope
.
FindVar
(
Input
(
"X"
))
->
Get
<
framework
::
LoDTensor
>
().
dims
();
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize
2int
(
x_dims
);
attrs
[
"shape"
]
=
framework
::
vectorize
<
int
>
(
x_dims
);
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape"
,
{{
"X"
,
{
dout_name
}},
{
"Shape"
,
{}}},
{{
"Out"
,
{
dx_name
}}},
...
...
@@ -231,7 +231,7 @@ class Squeeze2Op : public framework::OperatorBase {
auto
out_dims
=
Squeeze2OpInferShape
::
GetOutputShape
(
axes
,
x_dims
,
true
);
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize
2int
(
out_dims
);
attrs
[
"shape"
]
=
framework
::
vectorize
<
int
>
(
out_dims
);
// Invoke Reshape Op
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape2"
,
{{
"X"
,
{
Input
(
"X"
)}},
{
"Shape"
,
{}}},
...
...
@@ -284,7 +284,7 @@ class Squeeze2GradOp : public framework::OperatorBase {
auto
x_dims
=
framework
::
slice_ddim
(
xshape_dims
,
1
,
xshape_dims
.
size
());
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize
2int
(
x_dims
);
attrs
[
"shape"
]
=
framework
::
vectorize
<
int
>
(
x_dims
);
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape2"
,
{{
"X"
,
{
dout_name
}},
{
"Shape"
,
{}}},
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录