lod_tensor.cc 13.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

F
fengjiayi 已提交
15 16 17 18 19
#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <iterator>

Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/framework.pb.h"
F
fengjiayi 已提交
22
#include "paddle/fluid/framework/lod_tensor.h"
S
sneaxiy 已提交
23
#include "paddle/fluid/framework/var_type.h"
X
refine  
Xin Pan 已提交
24
#include "paddle/fluid/framework/version.h"
25

Y
Yi Wang 已提交
26 27
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/memory/memory.h"
28

Y
Yu Yang 已提交
29 30 31
#include "paddle/fluid/recordio/scanner.h"
#include "paddle/fluid/recordio/writer.h"

32 33 34
namespace paddle {
namespace framework {

武毅 已提交
35
std::ostream &operator<<(std::ostream &os, const LoD &lod) {
36
  os << "{";
武毅 已提交
37
  for (auto &v : lod) {
38
    os << "{";
L
Liu Yiqun 已提交
39
    bool is_first = true;
武毅 已提交
40
    for (auto &i : v) {
L
Liu Yiqun 已提交
41 42 43 44 45 46
      if (is_first) {
        os << i;
        is_first = false;
      } else {
        os << ", " << i;
      }
47 48 49 50 51 52 53 54
    }
    os << "}";
  }
  os << "}";

  return os;
}

Y
Yang Yang 已提交
55
std::ostream &operator<<(std::ostream &os, const LoDTensor &t) {
56
  if (!platform::is_cpu_place(t.place())) {
57 58 59
    LoDTensor cpu_tensor;
    cpu_tensor.set_lod(t.lod());
    framework::TensorCopy(t, platform::CPUPlace(), &cpu_tensor);
60 61 62 63
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(t.place());
    dev_ctx.Wait();

64
    os << cpu_tensor;
65 66 67
    return os;
  }

Y
Yang Yang 已提交
68 69 70 71 72 73
  os << "dim: " << t.dims() << "\n";
  os << "lod: " << t.lod() << "\n";

  // only print first ten elements
  int64_t size = t.numel() < 10 ? t.numel() : 10;
  for (int64_t i = 0; i < size; ++i) {
Y
Yu Yang 已提交
74
    if (t.type() == proto::VarType::FP32) {
75
      os << t.data<float>()[i] << " ";
Y
Yu Yang 已提交
76
    } else if (t.type() == proto::VarType::INT64) {
77 78 79 80
      os << t.data<int64_t>()[i] << " ";
    } else {
      PADDLE_THROW("LoDTensor data type not in [float, int64_t]");
    }
Y
Yang Yang 已提交
81 82 83 84 85
  }

  return os;
}

Q
Qiao Longfei 已提交
86 87 88 89 90 91
std::string LoDToString(const LoD &lod) {
  std::ostringstream stream;
  stream << lod;
  return stream.str();
}

武毅 已提交
92
LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
Q
qijun 已提交
93
                 size_t elem_end) {
94
  PADDLE_ENFORCE_LT(level, in.size());
95
  PADDLE_ENFORCE_LT(elem_begin, elem_end);
96 97 98 99 100 101 102 103
  PADDLE_ENFORCE_LT(elem_end, in[level].size());

  LoD res;
  res.resize(in.size() - level);
  // copy the first level
  res[0].assign(in[level].begin() + elem_begin,
                in[level].begin() + elem_end + 1);
  for (size_t lvl = 1; lvl < res.size(); lvl++) {
武毅 已提交
104 105 106
    const auto &in_level = in[level + lvl];
    const auto &above_level = res[lvl - 1];
    auto &out_level = res[lvl];
107 108
    out_level.assign(in_level.begin() + above_level.front(),
                     in_level.begin() + above_level.back() + 1);
109
  }
110 111 112 113
  for (size_t lvl = 0; lvl < res.size(); lvl++) {
    // to make the first offset equals 0, all the elements minus the first
    // element
    size_t front = res[lvl].front();
武毅 已提交
114
    for (auto &ele : res[lvl]) {
115 116 117 118 119 120
      ele -= front;
    }
  }
  return res;
}

武毅 已提交
121
LoD ToAbsOffset(const LoD &in) {
122 123 124
  // the lowest level stores relative offsets
  if (in.empty() || in.size() == 1) return in;
  LoD result = in;
Q
Qiao Longfei 已提交
125 126 127 128
  for (auto level = static_cast<int>(in.size() - 2); level >= 0; level--) {
    for (size_t i = 0; i < in[level].size(); ++i) {
      size_t index = in[level][i];
      result[level][i] = result[level + 1][index];
129 130 131
    }
  }
  return result;
132 133
}

武毅 已提交
134
bool operator==(const LoD &a, const LoD &b) {
135 136 137 138 139
  if (a.size() != b.size()) {
    return false;
  }

  for (size_t i = 0; i < a.size(); i++) {
武毅 已提交
140 141
    const auto &a_level = a[i];
    const auto &b_level = b[i];
142 143 144 145 146 147 148 149 150 151
    if (a_level.size() != b_level.size()) {
      return false;
    }
    for (size_t j = 0; j < a_level.size(); j++) {
      if (a_level[j] != b_level[j]) {
        return false;
      }
    }
  }
  return true;
152 153
}

Y
Yan Chunwei 已提交
154 155 156 157 158 159 160
bool CheckLoD(const LoD &in, int tensor_height) {
  if (in.empty()) return true;
  for (const auto &level : in) {
    // check: there should be more than 2 offsets existing in each level.
    if (level.size() < 2) return false;
    // check: the first offset(the begin offset) of each level should be 0.
    if (level.front() != 0) return false;
161
    // check: all the offsets in a level should be non-descending
S
sneaxiy 已提交
162 163
    if (!std::is_sorted(level.begin(), level.end())) {
      return false;
Y
Yan Chunwei 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
    }
  }
  // check: the lowest level's last offset should equals `tensor_height` if
  //        tensor_height>0.
  if (tensor_height > 0 && (size_t)tensor_height != in.back().back())
    return false;

  // check: the higher level's last offset should equals the lower level's
  // size-1.
  // NOTE LoD store the levels from top to bottom, so the higher level goes
  // first.
  for (size_t level = 0; level < in.size() - 1; level++) {
    if (in[level].back() != in[level + 1].size() - 1) return false;
  }
  return true;
}

bool CheckAbsLoD(const LoD &in, int tensor_height) {
  if (in.empty()) return true;
  for (const auto &level : in) {
    // check: all the offsets in a level should be ascending(no same items
185
    // allowed).
Y
Yan Chunwei 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
    if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
          if (a < b) return true;
          return false;
        })) {
      return false;
    }

    // check: there should be more than 2 offsets existing in each level.
    if (level.size() < 2) return false;

    // check: the first offset of each level should be 0, and the last should be
    // the same(the height of underlying tensor).
    if (level.front() != 0) return false;
    if (tensor_height < 0) {
      tensor_height = level.back();
    } else if ((size_t)tensor_height != level.back()) {
      return false;
    }
  }
  return true;
}

208
using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
武毅 已提交
209
LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx,
210 211 212 213 214 215
                                        size_t end_idx, size_t start_level) {
  LoD sub_lod;

  for (size_t level_idx = start_level; level_idx < lod.size(); ++level_idx) {
    PADDLE_ENFORCE_LE(start_idx, end_idx);
    PADDLE_ENFORCE_LT(end_idx, lod[level_idx].size());
216 217 218 219
    std::vector<size_t> level_lens;
    for (size_t i = start_idx; i < end_idx; ++i) {
      level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]);
    }
220
    sub_lod.emplace_back(level_lens);
221 222 223
    start_idx = lod[level_idx][start_idx];
    end_idx = lod[level_idx][end_idx];
  }
224 225

  return LoDAndOffset{sub_lod, {start_idx, end_idx}};
226 227
}

武毅 已提交
228
void AppendLoD(LoD *lod, const LoD &lod_length) {
229 230
  PADDLE_ENFORCE(
      lod->empty() || lod->size() == lod_length.size(),
231
      "The lod_length should has the same size with the appended lod.");
232
  if (lod->empty()) {
Y
Yang Yu 已提交
233 234 235
    for (size_t i = 0; i < lod_length.size(); ++i) {
      lod->emplace_back(1, 0);  // size = 1, value = 0;
    }
236 237
    *lod = LoD(lod_length.size(), std::vector<size_t>({0}));
  }
238
  for (size_t i = 0; i < lod->size(); ++i) {
武毅 已提交
239
    auto &level = (*lod)[i];
240 241 242 243 244 245
    for (size_t len : lod_length[i]) {
      level.push_back(level.back() + len);
    }
  }
}

武毅 已提交
246 247
void SerializeToStream(std::ostream &os, const LoDTensor &tensor,
                       const platform::DeviceContext &dev_ctx) {
248
  {  // the 1st field, uint32_t version for LoDTensor
X
refine  
Xin Pan 已提交
249 250
    os.write(reinterpret_cast<const char *>(&kCurTensorVersion),
             sizeof(kCurTensorVersion));
武毅 已提交
251
  }
252 253 254 255 256 257
  {
    // the 2st field, LoD information
    // uint64_t lod_level
    // uint64_t lod_level_1 size in byte.
    // int*     lod_level_1 data
    // ...
武毅 已提交
258 259 260 261 262 263 264 265 266 267 268
    auto lod = tensor.lod();
    uint64_t size = lod.size();
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));

    for (auto &each : lod) {
      size = each.size() * sizeof(framework::LoD::value_type::value_type);
      os.write(reinterpret_cast<const char *>(&size), sizeof(size));
      os.write(reinterpret_cast<const char *>(each.data()),
               static_cast<std::streamsize>(size));
    }
  }
269
  // the 3st field, Tensor
Y
Yi Wang 已提交
270
  TensorToStream(os, static_cast<Tensor>(tensor), dev_ctx);
武毅 已提交
271 272
}

Y
Yancey 已提交
273 274
void DeserializeFromStream(std::istream &is, LoDTensor *tensor,
                           const platform::DeviceContext &dev_ctx) {
275
  {
Y
Yancey 已提交
276
    // the 1st field, unit32_t version for LoDTensor
277 278
    uint32_t version;
    is.read(reinterpret_cast<char *>(&version), sizeof(version));
X
refine  
Xin Pan 已提交
279 280
    PADDLE_ENFORCE(framework::IsTensorVersionSupported(version),
                   "tensor version %u is not supported.", version);
281
    PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
武毅 已提交
282
  }
283 284
  {
    // the 2st field, LoD information
武毅 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297
    uint64_t lod_level;
    is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
    auto &lod = *tensor->mutable_lod();
    lod.resize(lod_level);
    for (uint64_t i = 0; i < lod_level; ++i) {
      uint64_t size;
      is.read(reinterpret_cast<char *>(&size), sizeof(size));
      std::vector<size_t> tmp(size / sizeof(size_t));
      is.read(reinterpret_cast<char *>(tmp.data()),
              static_cast<std::streamsize>(size));
      lod[i] = tmp;
    }
  }
298
  // the 3st filed, Tensor
Y
Yi Wang 已提交
299
  TensorFromStream(is, static_cast<Tensor *>(tensor), dev_ctx);
武毅 已提交
300 301
}

F
fengjiayi 已提交
302
void WriteToRecordIO(recordio::Writer *writer,
Y
Yu Yang 已提交
303 304 305 306 307 308 309 310
                     const std::vector<LoDTensor> &tensor,
                     const platform::DeviceContext &dev_ctx) {
  std::stringstream buffer;
  size_t sz = tensor.size();
  buffer.write(reinterpret_cast<const char *>(&sz), sizeof(uint32_t));
  for (auto &each : tensor) {
    SerializeToStream(buffer, each, dev_ctx);
  }
F
fengjiayi 已提交
311
  writer->Write(buffer.str());
Y
Yu Yang 已提交
312 313
}

Y
yuyang18 已提交
314 315 316 317 318
bool ReadFromRecordIO(recordio::Scanner *scanner,
                      const platform::DeviceContext &dev_ctx,
                      std::vector<LoDTensor> *result_ptr) {
  if (!scanner->HasNext()) {
    return false;
Y
Yu Yang 已提交
319
  }
Y
yuyang18 已提交
320 321 322 323 324 325 326 327 328 329
  std::istringstream sin(scanner->Next());
  uint32_t sz;
  sin.read(reinterpret_cast<char *>(&sz), sizeof(uint32_t));
  auto &result = *result_ptr;
  result.resize(sz);
  for (uint32_t i = 0; i < sz; ++i) {
    DeserializeFromStream(sin, &result[i], dev_ctx);
  }

  return true;
Y
Yu Yang 已提交
330
}
P
peizhilin 已提交
331

Y
Yang Yang 已提交
332 333 334
std::vector<LoDTensor> LoDTensor::SplitLoDTensor(
    const std::vector<platform::Place> places) const {
  check_memory_size();
Y
Yang Yang 已提交
335 336 337 338
  int batch_size =
      lod().empty() ? dims()[0] : static_cast<int>(lod()[0].size()) - 1;
  size_t result_size = std::min(static_cast<size_t>(batch_size), places.size());
  size_t remainder = batch_size % places.size();
Y
Yu Yang 已提交
339 340 341 342

  std::vector<LoDTensor> results;
  results.reserve(result_size);

Y
Yang Yang 已提交
343
  int step_width = static_cast<int>(batch_size / result_size);
Y
Yu Yang 已提交
344 345 346 347 348 349
  for (size_t i = 0; i < result_size; ++i) {
    int begin = static_cast<int>(i * step_width);
    int end = static_cast<int>((i + 1) * step_width);
    if (i + 1 == places.size()) {  // last
      end += remainder;
    }
Y
Yang Yang 已提交
350

351
    LoDTensor dst;
Y
Yang Yang 已提交
352 353
    if (lod().empty()) {
      auto src = Slice(begin, end);
Y
Yang Yang 已提交
354
      auto &dst_place = places[i];
Y
Yi Wang 已提交
355
      framework::TensorCopy(src, dst_place, &dst);
Y
Yang Yang 已提交
356 357 358 359 360
    } else {
      auto lod_and_offset = GetSubLoDAndAbsoluteOffset(lod(), begin, end, 0);

      auto &offset = lod_and_offset.second;
      auto src = Slice(offset.first, offset.second);
Y
Yang Yang 已提交
361
      auto &dst_place = places[i];
Y
Yi Wang 已提交
362
      framework::TensorCopy(src, dst_place, &dst);
Y
Yang Yang 已提交
363 364 365 366 367 368 369 370 371 372 373

      LoD my_lod;
      for (auto &l : lod_and_offset.first) {
        std::vector<size_t> v{0};
        for (auto &ll : l) {
          v.push_back(ll + v.back());
        }
        my_lod.emplace_back(v);
      }
      dst.set_lod(my_lod);
    }
Y
Yang Yang 已提交
374
    results.emplace_back(dst);
Y
Yang Yang 已提交
375 376
  }

Y
Yu Yang 已提交
377
  return results;
Y
Yang Yang 已提交
378 379
}

Y
Yang Yang 已提交
380
void LoDTensor::MergeLoDTensor(
381 382
    const std::vector<const LoDTensor *> &lod_tensors,
    platform::Place dst_place) {
Y
Yang Yang 已提交
383
  PADDLE_ENFORCE(!lod_tensors.empty());
Y
Yang Yang 已提交
384

Y
Yang Yang 已提交
385
  framework::DDim new_dim = lod_tensors[0]->dims();
Y
Yu Yang 已提交
386
  auto new_type = lod_tensors[0]->type();
Y
Yang Yang 已提交
387 388 389 390
  framework::DataLayout new_layout = lod_tensors[0]->layout();
  LoD new_lod = lod_tensors[0]->lod();
  for (size_t i = 1; i < lod_tensors.size(); ++i) {
    auto *t = lod_tensors[i];
S
sneaxiy 已提交
391
    PADDLE_ENFORCE_EQ(new_type, t->type());
Y
Yang Yang 已提交
392 393 394 395 396 397 398
    PADDLE_ENFORCE_EQ(new_layout, t->layout());

    PADDLE_ENFORCE_EQ(framework::product(new_dim) / new_dim[0],
                      framework::product(t->dims()) / t->dims()[0]);
    new_dim[0] += t->dims()[0];

    auto &lod = t->lod();
F
fengjiayi 已提交
399
    PADDLE_ENFORCE_EQ(new_lod.size(), lod.size());
Y
Yang Yang 已提交
400 401
    for (size_t j = 0; j < lod.size(); ++j) {
      auto &sub_lod = new_lod[j];
C
chengduo 已提交
402
      size_t offset = sub_lod.back();
Y
Yang Yang 已提交
403 404 405 406
      for (size_t k = 1; k < lod[j].size(); ++k) {
        sub_lod.push_back(lod[j][k] + offset);
      }
    }
Y
Yang Yang 已提交
407 408
  }
  Resize(new_dim);
409
  set_layout(new_layout);
Y
Yang Yang 已提交
410
  set_lod(new_lod);
411
  mutable_data(dst_place, new_type);
Y
Yang Yang 已提交
412

413
  int begin = 0;
Y
Yang Yang 已提交
414
  for (auto *src : lod_tensors) {
415 416
    int end = begin + src->dims()[0];
    auto dst = Slice(begin, end);
Y
Yi Wang 已提交
417
    framework::TensorCopy(*src, dst_place, &dst);
418
    begin = end;
Y
Yang Yang 已提交
419 420 421
  }
}

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
LoD ConvertToLengthBasedLoD(const LoD &offset_lod) {
  LoD length_lod;
  length_lod.reserve(offset_lod.size());
  for (size_t lvl = 0; lvl < offset_lod.size(); ++lvl) {
    std::vector<size_t> level;
    if (offset_lod[lvl].size() > 0) {
      level.reserve(offset_lod[lvl].size() - 1);
    }
    for (size_t idx = 0; idx < offset_lod[lvl].size() - 1; ++idx) {
      level.push_back(offset_lod[lvl][idx + 1] - offset_lod[lvl][idx]);
    }
    length_lod.push_back(level);
  }
  return length_lod;
}

LoD ConvertToOffsetBasedLoD(const LoD &length_lod) {
  LoD offset_lod;
  offset_lod.reserve(length_lod.size());
  for (size_t lvl = 0; lvl < length_lod.size(); ++lvl) {
    std::vector<size_t> level;
    level.reserve(length_lod[lvl].size() + 1);
    size_t tmp = 0;
    level.push_back(tmp);
    for (size_t idx = 0; idx < length_lod[lvl].size(); ++idx) {
      tmp += length_lod[lvl][idx];
      level.push_back(tmp);
    }
    offset_lod.push_back(level);
  }
  return offset_lod;
}

455 456
}  // namespace framework
}  // namespace paddle