unique_op.h 4.4 KB
Newer Older
Z
zhoukunsheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <cmath>
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

template <typename InT>
struct UniqueOpFunctor {
  framework::Tensor* out_;
  framework::Tensor* index_;
  const framework::Tensor* in_;
31
  framework::Tensor* count_;
Z
zhoukunsheng 已提交
32 33

  UniqueOpFunctor(framework::Tensor* out, framework::Tensor* index,
34 35 36
                  const framework::Tensor* in,
                  framework::Tensor* count = nullptr)
      : out_(out), index_(index), in_(in), count_(count) {}
Z
zhoukunsheng 已提交
37 38 39 40 41 42 43 44 45 46 47 48

  template <typename IndexT>
  void apply() const {
    auto* in_data = in_->data<InT>();
    auto* index_data = index_->mutable_data<IndexT>(platform::CPUPlace());

    int64_t j = 0;

    // TODO(fangzeyang): Should optimize performance here.
    std::unordered_map<InT, int64_t> dict;
    std::vector<InT> uniq;

49 50 51 52 53 54
    PADDLE_ENFORCE_LT(
        in_->numel(), pow(2, 31),
        platform::errors::InvalidArgument(
            "The num of Input(X) elements should be less then INT_MAX, "
            "but received num is %d.",
            in_->numel()));
Z
zhoukunsheng 已提交
55 56 57 58

    for (auto i = 0; i < in_->numel(); i++) {
      auto it = dict.find(in_data[i]);
      if (it == dict.end()) {
59 60
        dict.emplace(std::make_pair(in_data[i], j));
        uniq.emplace_back(in_data[i]);
Z
zhoukunsheng 已提交
61 62 63 64 65 66 67
        index_data[i] = static_cast<IndexT>(j);
        j++;
      } else {
        index_data[i] = static_cast<IndexT>(it->second);
      }
    }

68 69 70 71 72 73 74 75 76 77
    if (count_ != nullptr) {
      // Resize the count tensor dims to allocate the memory
      count_->Resize(framework::make_ddim({static_cast<int64_t>(uniq.size())}));
      IndexT* count_data = count_->mutable_data<IndexT>(platform::CPUPlace());
      // init count_data to 0
      memset(count_data, 0, uniq.size() * sizeof(IndexT));

      const auto& index_type = index_->type();
      bool index_type_match = index_type == framework::proto::VarType::INT32 ||
                              index_type == framework::proto::VarType::INT64;
78 79 80 81 82 83 84 85 86
      PADDLE_ENFORCE_EQ(index_type_match, true,
                        platform::errors::InvalidArgument(
                            "Index holds the wrong type, it holds %s, "
                            "but desires to be %s or %s",
                            paddle::framework::DataTypeToString(index_type),
                            paddle::framework::DataTypeToString(
                                framework::proto::VarType::INT32),
                            paddle::framework::DataTypeToString(
                                framework::proto::VarType::INT64)));
87 88 89 90 91 92 93 94 95 96 97 98 99 100

      if (index_type == framework::proto::VarType::INT32) {
        for (auto i = 0; i < in_->numel(); ++i) {
          const IndexT& index = index_data[i];
          count_data[static_cast<int32_t>(index)] += static_cast<IndexT>(1);
        }
      } else {
        for (auto i = 0; i < in_->numel(); ++i) {
          const IndexT& index = index_data[i];
          count_data[static_cast<int64_t>(index)] += static_cast<IndexT>(1);
        }
      }
    }

Z
zhoukunsheng 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    out_->Resize(framework::make_ddim({static_cast<int64_t>(uniq.size())}));
    auto out_data = out_->mutable_data<InT>(platform::CPUPlace());
    std::memcpy(out_data, uniq.data(), uniq.size() * sizeof(InT));
  }
};

template <typename T>
class UniqueKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto data_type = static_cast<framework::proto::VarType::Type>(
        context.Attr<int>("dtype"));
    auto* x = context.Input<framework::Tensor>("X");
    auto* out = context.Output<framework::Tensor>("Out");
    auto* index = context.Output<framework::Tensor>("Index");

    framework::VisitDataType(data_type, UniqueOpFunctor<T>(out, index, x));
  }
};

}  // namespace operators
}  // namespace paddle