section_worker.cc 6.4 KB
Newer Older
H
hutuxian 已提交
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

12 13
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
    defined(WITH_ASCEND_CL)
L
lilong12 已提交
14
#include <float.h>
H
hutuxian 已提交
15
#include "paddle/fluid/framework/device_worker.h"
16
#include "paddle/fluid/framework/executor_gc_helper.h"
H
hutuxian 已提交
17 18 19 20 21
#include "paddle/fluid/platform/device_context.h"

namespace paddle {
namespace framework {

22 23
class TrainerDesc;

L
lilong12 已提交
24 25
uint64_t SectionWorker::batch_id_(0);

26
void SectionWorker::Initialize(const TrainerDesc &desc) {
H
hutuxian 已提交
27
  dev_ctx_ = platform::DeviceContextPool::Instance().Get(place_);
28 29
  program_.reset(
      new ProgramDesc(desc.section_param().section_config().program_desc()));
30
  for (auto &op_desc : program_->Block(0).AllOps()) {
H
hutuxian 已提交
31 32 33 34
    ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
}

35 36 37 38 39 40 41 42
void SectionWorker::RunForward(
    int micro_id, std::unique_ptr<GarbageCollector> &gc,
    std::unordered_map<const OperatorBase *, std::vector<std::string>>
        &unused_vars_) {
  for (auto &op : ops_) {
    int op_role = op->Attr<int>(std::string("op_role"));
    // We run op with op_role = kLRSched only for the first microbatch
    // to avoid increasing the @LR_DECAY_STEP@ multiple times.
43 44 45 46 47 48 49
    bool run_first_mbatch = (op_role == static_cast<int>(OpRole::kForward)) ||
                            (op_role == (static_cast<int>(OpRole::kForward) |
                                         static_cast<int>(OpRole::kLoss))) ||
                            (op_role == static_cast<int>(OpRole::kLRSched));
    bool run_others = (op_role == static_cast<int>(OpRole::kForward)) ||
                      (op_role == (static_cast<int>(OpRole::kForward) |
                                   static_cast<int>(OpRole::kLoss)));
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    if ((micro_id == 0 && run_first_mbatch) || (micro_id != 0 && run_others)) {
      VLOG(3) << "Forward: running op " << op->Type() << " for micro-batch "
              << micro_id;
      op->Run(*microbatch_scopes_[micro_id], place_);
      if (gc) {
        DeleteUnusedTensors(*microbatch_scopes_[micro_id], op.get(),
                            unused_vars_, gc.get());
      }
    }
  }
}

void SectionWorker::RunBackward(
    int micro_id, std::unique_ptr<GarbageCollector> &gc,
    std::unordered_map<const OperatorBase *, std::vector<std::string>>
        &unused_vars_) {
  for (auto &op : ops_) {
    int op_role = op->Attr<int>(std::string("op_role"));
68 69 70
    if ((op_role == static_cast<int>(OpRole::kBackward)) ||
        (op_role == (static_cast<int>(OpRole::kBackward) |
                     static_cast<int>(OpRole::kLoss)))) {
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
      VLOG(3) << "Backward: running op " << op->Type() << " for micro-batch "
              << micro_id;
      op->Run(*microbatch_scopes_[micro_id], place_);
      if (gc) {
        DeleteUnusedTensors(*microbatch_scopes_[micro_id], op.get(),
                            unused_vars_, gc.get());
      }
    }
  }
}

void SectionWorker::RunUpdate(
    std::unique_ptr<GarbageCollector> &gc,
    std::unordered_map<const OperatorBase *, std::vector<std::string>>
        &unused_vars_) {
  for (auto &op : ops_) {
    int op_role = op->Attr<int>(std::string("op_role"));
    if (op_role == static_cast<int>(OpRole::kOptimize)) {
      VLOG(3) << "Update: running op " << op->Type();
      op->Run(*microbatch_scopes_[num_microbatches_ - 1], place_);
      if (gc) {
        DeleteUnusedTensors(*microbatch_scopes_[num_microbatches_ - 1],
                            op.get(), unused_vars_, gc.get());
      }
    }
  }
}

H
hutuxian 已提交
99
void SectionWorker::TrainFiles() {
100
  VLOG(5) << "begin section_worker TrainFiles";
H
hutuxian 已提交
101

102
  int64_t max_memory_size = GetEagerDeletionThreshold();
L
lilong12 已提交
103 104
  std::unique_ptr<GarbageCollector> gc;
  auto unused_vars_ = GetUnusedVars(program_->Block(0), ops_, skip_vars_);
105
  if (max_memory_size >= 0) {
106
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
107 108 109 110 111
    if (platform::is_gpu_place(place_)) {
      if (IsFastEagerDeletionModeEnabled()) {
        gc.reset(new UnsafeFastGPUGarbageCollector(
            BOOST_GET_CONST(platform::CUDAPlace, place_), max_memory_size));
      }
H
hutuxian 已提交
112
    }
L
lilong12 已提交
113 114
#endif
  }
H
hutuxian 已提交
115

116 117 118 119 120 121
  if (schedule_mode_ == 0) {
    // F-then-B scheduler which runs Forward phase for all microbatches,
    // then runs Backward phase for all microbatches.
    // step1: run forward
    for (int i = 0; i < num_microbatches_; ++i) {
      RunForward(i, gc, unused_vars_);
H
hutuxian 已提交
122
    }
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    // step2: run backward
    for (int i = 0; i < num_microbatches_; ++i) {
      RunBackward(i, gc, unused_vars_);
    }
    // step3: run update
    RunUpdate(gc, unused_vars_);
  } else {
    // 1F1B scheduler, which runs forward phase and backward phase altertively
    // after startup phase. For a stage, the number of microbatches for
    // startup is num_pipeline_stages_ - pipeline_stage_ - 1, where
    // num_pipeline_stages_ is the total number of pipeline stages and
    // pipeline_stage_ is the pipeline stage of the current device.
    auto startup_steps = num_pipeline_stages_ - pipeline_stage_ - 1;
    VLOG(3) << "startup_steps:" << startup_steps
            << ", num_stages: " << num_pipeline_stages_
            << ", stage:" << pipeline_stage_;
    PADDLE_ENFORCE_GT(
        num_microbatches_, startup_steps,
        platform::errors::InvalidArgument(
            "To use pipeline with 1F1B scheduler, please make sure number of "
            "microbatches (%d) is than startup steps (%d).",
            num_microbatches_, startup_steps));
    int fw_step = 0;
    int bw_step = 0;
    // startup phase
    while (fw_step < startup_steps) {
      RunForward(fw_step, gc, unused_vars_);
      fw_step += 1;
H
hutuxian 已提交
151 152
    }

153 154 155 156 157 158 159 160 161 162 163
    // 1f1b phase
    while (fw_step < num_microbatches_) {
      RunForward(fw_step, gc, unused_vars_);
      fw_step += 1;
      RunBackward(bw_step, gc, unused_vars_);
      bw_step += 1;
    }
    // backward phase
    while (bw_step < num_microbatches_) {
      RunBackward(bw_step, gc, unused_vars_);
      bw_step += 1;
H
hutuxian 已提交
164
    }
165
    RunUpdate(gc, unused_vars_);
H
hutuxian 已提交
166
  }
167 168
  dev_ctx_->Wait();
  ++batch_id_;
H
hutuxian 已提交
169
}
170

H
hutuxian 已提交
171 172 173
}  // namespace framework
}  // namespace paddle
#endif