test_conv3d_op.py 33.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
chengduoZH 已提交
15
import unittest
16

17
import numpy as np
W
wanghuancoder 已提交
18
from eager_op_test import OpTest, paddle_static_guard
19

H
hong 已提交
20
import paddle
21
import paddle.fluid.core as core
C
chengduoZH 已提交
22 23


24 25 26 27 28 29 30 31
def conv3d_forward_naive(
    input,
    filter,
    group,
    conv_param,
    padding_algorithm='EXPLICIT',
    data_format="NCDHW",
):
L
liym27 已提交
32 33

    if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
34 35 36 37
        raise ValueError(
            "Unknown Attr(padding_algorithm): '%s'. "
            "It can only be 'SAME' or 'VALID'." % str(padding_algorithm)
        )
L
liym27 已提交
38 39

    if data_format not in ["NCDHW", "NDHWC"]:
40 41 42 43
        raise ValueError(
            "Unknown Attr(data_format): '%s' ."
            "It can only be 'NCDHW' or 'NDHWC'." % str(data_format)
        )
L
liym27 已提交
44

45
    channel_last = data_format == "NDHWC"
L
liym27 已提交
46 47 48
    if channel_last:
        input = np.transpose(input, [0, 4, 1, 2, 3])

49
    in_n, in_c, in_d, in_h, in_w = input.shape
L
liym27 已提交
50 51 52 53

    f_n, f_c, f_d, f_h, f_w = filter.shape
    out_n = in_n
    out_c = f_n
54 55
    assert f_c * group == in_c
    assert np.mod(out_c, group) == 0
M
minqiyang 已提交
56
    sub_out_c = out_c // group
L
liym27 已提交
57
    sub_f_n = f_n // group
58

59 60 61 62 63
    stride, pad, dilation = (
        conv_param['stride'],
        conv_param['pad'],
        conv_param['dilations'],
    )
C
chengduoZH 已提交
64

L
liym27 已提交
65 66 67
    # update pad and dilation
    def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
        padding = []
68 69 70
        for input_size, filter_size, stride_size in zip(
            input_shape, pool_size, pool_stride
        ):
L
liym27 已提交
71
            out_size = int((input_size + stride_size - 1) / stride_size)
72
            pad_sum = np.max(
73 74
                ((out_size - 1) * stride_size + filter_size - input_size, 0)
            )
L
liym27 已提交
75 76 77 78 79 80 81 82 83 84 85
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    ksize = filter.shape[2:5]
    if padding_algorithm == "VALID":
        pad = [0, 0, 0, 0, 0, 0]
    elif padding_algorithm == "SAME":
        dilation = [1, 1, 1]
86
        input_data_shape = input.shape[2:5]
L
liym27 已提交
87 88 89 90 91 92 93 94 95 96
        pad = _get_padding_with_SAME(input_data_shape, ksize, stride)

    pad_d_0, pad_d_1 = pad[0], pad[0]
    pad_h_0, pad_h_1 = pad[1], pad[1]
    pad_w_0, pad_w_1 = pad[2], pad[2]
    if len(pad) == 6:
        pad_d_0, pad_d_1 = pad[0], pad[1]
        pad_h_0, pad_h_1 = pad[2], pad[3]
        pad_w_0, pad_w_1 = pad[4], pad[5]

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    out_d = (
        1
        + (in_d + pad_d_0 + pad_d_1 - (dilation[0] * (f_d - 1) + 1))
        // stride[0]
    )
    out_h = (
        1
        + (in_h + pad_h_0 + pad_h_1 - (dilation[1] * (f_h - 1) + 1))
        // stride[1]
    )
    out_w = (
        1
        + (in_w + pad_w_0 + pad_w_1 - (dilation[2] * (f_w - 1) + 1))
        // stride[2]
    )
C
chengduoZH 已提交
112

113 114
    out = np.zeros((in_n, out_c, out_d, out_h, out_w))

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    d_bolck_d = dilation[0] * (f_d - 1) + 1
    d_bolck_h = dilation[1] * (f_h - 1) + 1
    d_bolck_w = dilation[2] * (f_w - 1) + 1

    input_pad = np.pad(
        input,
        (
            (0, 0),
            (0, 0),
            (pad_d_0, pad_d_1),
            (pad_h_0, pad_h_1),
            (pad_w_0, pad_w_1),
        ),
        mode='constant',
        constant_values=0,
    )
C
chengduoZH 已提交
131

L
liym27 已提交
132
    filter_dilation = np.zeros((f_n, f_c, d_bolck_d, d_bolck_h, d_bolck_w))
133 134 135 136 137 138 139
    filter_dilation[
        :,
        :,
        0 : d_bolck_d : dilation[0],
        0 : d_bolck_h : dilation[1],
        0 : d_bolck_w : dilation[2],
    ] = filter
C
chengduoZH 已提交
140

141 142 143 144
    for d in range(out_d):
        for i in range(out_h):
            for j in range(out_w):
                for g in range(group):
145 146 147 148 149 150 151 152 153 154 155
                    input_pad_masked = input_pad[
                        :,
                        g * f_c : (g + 1) * f_c,
                        d * stride[0] : d * stride[0] + d_bolck_d,
                        i * stride[1] : i * stride[1] + d_bolck_h,
                        j * stride[2] : j * stride[2] + d_bolck_w,
                    ]

                    f_sub = filter_dilation[
                        g * sub_f_n : (g + 1) * sub_f_n, :, :, :, :
                    ]
156
                    for k in range(sub_out_c):
157 158 159 160
                        out[:, g * sub_out_c + k, d, i, j] = np.sum(
                            input_pad_masked * f_sub[k, :, :, :, :],
                            axis=(1, 2, 3, 4),
                        )
L
liym27 已提交
161 162
    if channel_last:
        out = np.transpose(out, [0, 2, 3, 4, 1])
163 164 165
    return out


L
liym27 已提交
166
def create_test_cudnn_class(parent):
167 168 169
    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
L
liym27 已提交
170 171 172
    class TestCUDNNCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
173 174 175
            self.dtype = (
                np.float32 if core.is_compiled_with_rocm() else np.float64
            )
L
liym27 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

    cls_name = "{0}_{1}".format(parent.__name__, "CUDNN")
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase


def create_test_padding_SAME_class(parent):
    class TestPaddingSMAECase(parent):
        def init_paddings(self):
            self.pad = [0, 0, 0]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp")
    TestPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestPaddingSMAECase


def create_test_padding_VALID_class(parent):
    class TestPaddingVALIDCase(parent):
        def init_paddings(self):
            self.pad = [1, 1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp")
    TestPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestPaddingVALIDCase


def create_test_cudnn_padding_SAME_class(parent):
205 206 207
    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
L
liym27 已提交
208 209 210
    class TestCUDNNPaddingSMAECase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
211 212 213
            self.dtype = (
                np.float32 if core.is_compiled_with_rocm() else np.float64
            )
L
liym27 已提交
214 215 216 217 218 219 220 221 222 223 224

        def init_paddings(self):
            self.pad = [1, 1, 1]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingSAMEOp")
    TestCUDNNPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingSMAECase


def create_test_cudnn_padding_VALID_class(parent):
225 226 227
    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
L
liym27 已提交
228 229 230
    class TestCUDNNPaddingVALIDCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
231 232 233
            self.dtype = (
                np.float32 if core.is_compiled_with_rocm() else np.float64
            )
L
liym27 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258

        def init_paddings(self):
            self.pad = [1, 1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingVALIDOp")
    TestCUDNNPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingVALIDCase


def create_test_channel_last_class(parent):
    class TestChannelLastCase(parent):
        def init_data_format(self):
            self.data_format = "NDHWC"

        def init_test_case_2(self):
            N, C, D, H, W = self.input_size
            self.input_size = [N, D, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "ChannelLast")
    TestChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestChannelLastCase


def create_test_cudnn_channel_last_class(parent):
259 260 261
    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
L
liym27 已提交
262 263 264
    class TestCudnnChannelLastCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
265 266 267
            self.dtype = (
                np.float32 if core.is_compiled_with_rocm() else np.float64
            )
L
liym27 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280

        def init_data_format(self):
            self.data_format = "NDHWC"

        def init_test_case_2(self):
            N, C, D, H, W = self.input_size
            self.input_size = [N, D, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnChannelLast")
    TestCudnnChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestCudnnChannelLastCase


W
wanghuancoder 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
def conv3d_wrapper(
    x,
    weight,
    stride=1,
    padding=0,
    padding_algorithm="EXPLICIT",
    groups=1,
    dilation=1,
    data_format="NCDHW",
):
    if data_format == "AnyLayout":
        data_format = "NCDHW"
    if padding_algorithm is None:
        padding_algorithm = "EXPLICIT"
    return paddle._C_ops.conv3d(
        x,
        weight,
        stride,
        padding,
        padding_algorithm,
        groups,
        dilation,
        data_format,
    )


C
cnn 已提交
307
class TestConv3DOp(OpTest):
C
chengduoZH 已提交
308
    def setUp(self):
K
Kexin Zhao 已提交
309
        self.op_type = "conv3d"
W
wanghuancoder 已提交
310
        self.python_api = conv3d_wrapper
311
        self.use_cudnn = False
312 313
        self.use_mkldnn = False
        self.data_format = "AnyLayout"
314
        self.dtype = np.float64
K
Kexin Zhao 已提交
315
        self.init_kernel_type()
316
        self.init_group()
C
chengduoZH 已提交
317
        self.init_dilation()
318 319
        self.init_test_case()

C
chengduoZH 已提交
320 321 322
        conv3d_param = {
            'stride': self.stride,
            'pad': self.pad,
323
            'dilations': self.dilations,
C
chengduoZH 已提交
324
        }
K
Kexin Zhao 已提交
325 326 327

        input = np.random.random(self.input_size).astype(self.dtype)
        filter = np.random.random(self.filter_size).astype(self.dtype)
L
liym27 已提交
328 329 330 331
        output = conv3d_forward_naive(
            input,
            filter,
            self.groups,
332 333
            conv3d_param,
        ).astype(self.dtype)
C
chengduoZH 已提交
334

K
Kexin Zhao 已提交
335 336
        self.inputs = {
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
337
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter),
K
Kexin Zhao 已提交
338
        }
C
chengduoZH 已提交
339
        self.attrs = {
340 341
            'strides': self.stride,
            'paddings': self.pad,
C
chengduoZH 已提交
342
            'groups': self.groups,
K
Kexin Zhao 已提交
343
            'dilations': self.dilations,
344 345
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
346
            'data_format': self.data_format,
C
chengduoZH 已提交
347 348 349
        }
        self.outputs = {'Output': output}

350
    def has_cudnn(self):
351 352
        return core.is_compiled_with_cuda() and self.use_cudnn

C
chengduoZH 已提交
353
    def test_check_output(self):
354
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
355
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
356
        self.check_output_with_place(
357
            place, atol=1e-5, check_dygraph=(not self.use_mkldnn)
358
        )
C
chengduoZH 已提交
359 360

    def test_check_grad(self):
K
Kexin Zhao 已提交
361 362
        if self.dtype == np.float16:
            return
363
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
364
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
365 366 367 368 369
        self.check_grad_with_place(
            place,
            {'Input', 'Filter'},
            'Output',
            max_relative_error=0.03,
370
            check_dygraph=(not self.use_mkldnn),
371
        )
C
chengduoZH 已提交
372

C
chengduoZH 已提交
373
    def test_check_grad_no_filter(self):
K
Kexin Zhao 已提交
374 375
        if self.dtype == np.float16:
            return
376
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
377
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
378 379 380 381 382 383
        self.check_grad_with_place(
            place,
            ['Input'],
            'Output',
            max_relative_error=0.03,
            no_grad_set=set(['Filter']),
384
            check_dygraph=(not self.use_mkldnn),
385
        )
C
chengduoZH 已提交
386 387

    def test_check_grad_no_input(self):
K
Kexin Zhao 已提交
388 389
        if self.dtype == np.float16:
            return
390
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
391
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
392 393 394 395 396 397
        self.check_grad_with_place(
            place,
            ['Filter'],
            'Output',
            max_relative_error=0.03,
            no_grad_set=set(['Input']),
398
            check_dygraph=(not self.use_mkldnn),
399
        )
C
chengduoZH 已提交
400

401 402 403
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
C
chengduoZH 已提交
404
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
405
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
406
        f_c = self.input_size[1] // self.groups
407 408
        self.filter_size = [6, f_c, 3, 3, 3]

L
liym27 已提交
409 410 411
    def init_test_case_2(self):
        pass

C
chengduoZH 已提交
412 413 414
    def init_dilation(self):
        self.dilations = [1, 1, 1]

415
    def init_group(self):
C
chengduoZH 已提交
416 417
        self.groups = 1

K
Kexin Zhao 已提交
418 419
    def init_kernel_type(self):
        pass
420

C
chengduoZH 已提交
421

C
cnn 已提交
422
class TestCase1(TestConv3DOp):
C
chengduoZH 已提交
423 424 425
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
C
chengduoZH 已提交
426
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
C
chengduoZH 已提交
427
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
428
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
429 430 431
        self.filter_size = [6, f_c, 3, 3, 3]


C
cnn 已提交
432
class TestWithGroup1(TestConv3DOp):
C
chengduoZH 已提交
433 434
    def init_group(self):
        self.groups = 3
C
chengduoZH 已提交
435 436


C
chengduoZH 已提交
437
class TestWithGroup2(TestCase1):
438
    def init_group(self):
C
chengduoZH 已提交
439 440
        self.groups = 3

441

C
cnn 已提交
442
class TestWith1x1(TestConv3DOp):
C
chengduoZH 已提交
443 444 445
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
L
liym27 已提交
446
        self.input_size = [2, 3, 4, 4, 4]
C
chengduoZH 已提交
447
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
448
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
449
        self.filter_size = [120, f_c, 1, 1, 1]
C
chengduoZH 已提交
450 451 452

    def init_dilation(self):
        self.dilations = [1, 1, 1]
C
chengduoZH 已提交
453

C
chengduoZH 已提交
454 455 456
    def init_group(self):
        self.groups = 3

C
chengduoZH 已提交
457

C
cnn 已提交
458
class TestWithInput1x1Filter1x1(TestConv3DOp):
459 460 461
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
Z
zhupengyang 已提交
462
        self.input_size = [40, 3, 1, 1, 1]
463
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
464
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
465
        self.filter_size = [120, f_c, 1, 1, 1]
466 467 468 469 470 471 472 473

    def init_dilation(self):
        self.dilations = [1, 1, 1]

    def init_group(self):
        self.groups = 3


C
cnn 已提交
474
class TestWithDilation(TestConv3DOp):
C
chengduoZH 已提交
475 476 477
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
L
liym27 已提交
478
        self.input_size = [2, 3, 6, 6, 6]
C
chengduoZH 已提交
479
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
480
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
481
        self.filter_size = [24, f_c, 2, 2, 2]
C
chengduoZH 已提交
482 483 484 485 486 487

    def init_dilation(self):
        self.dilations = [2, 2, 2]

    def init_group(self):
        self.groups = 3
C
chengduoZH 已提交
488

C
chengduoZH 已提交
489

490
# ---------------- Conv3DCUDNN ----------------
L
liym27 已提交
491 492


493 494 495
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
C
cnn 已提交
496
class TestCUDNN(TestConv3DOp):
K
Kexin Zhao 已提交
497
    def init_kernel_type(self):
498
        self.use_cudnn = True
499
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
K
Kexin Zhao 已提交
500 501


502 503 504
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
C
cnn 已提交
505
class TestFP16CUDNN(TestConv3DOp):
K
Kexin Zhao 已提交
506 507 508 509 510 511 512 513 514
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
武毅 已提交
515 516


517 518 519
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
520
class TestWithGroup1CUDNN(TestWithGroup1):
K
Kexin Zhao 已提交
521
    def init_kernel_type(self):
522
        self.use_cudnn = True
523
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
K
Kexin Zhao 已提交
524 525


526 527 528
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
K
Kexin Zhao 已提交
529 530 531 532 533 534 535 536 537 538
class TestFP16WithGroup1CUDNN(TestWithGroup1):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
武毅 已提交
539 540


541 542 543
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
544
class TestWithGroup2CUDNN(TestWithGroup2):
K
Kexin Zhao 已提交
545
    def init_kernel_type(self):
546
        self.use_cudnn = True
547
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
K
Kexin Zhao 已提交
548 549


550 551 552
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
K
Kexin Zhao 已提交
553 554 555 556 557 558 559 560 561 562
class TestFP16WithGroup2CUDNN(TestWithGroup2):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
武毅 已提交
563 564


565 566 567
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
568
class TestWith1x1CUDNN(TestWith1x1):
K
Kexin Zhao 已提交
569
    def init_kernel_type(self):
570
        self.use_cudnn = True
571
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
K
Kexin Zhao 已提交
572 573


574 575 576
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
K
Kexin Zhao 已提交
577 578 579 580 581 582 583 584 585 586
class TestFP16With1x1CUDNN(TestWith1x1):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
武毅 已提交
587 588


589 590 591
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
592
class TestWithInput1x1Filter1x1CUDNN(TestWithInput1x1Filter1x1):
K
Kexin Zhao 已提交
593
    def init_kernel_type(self):
594
        self.use_cudnn = True
595
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
K
Kexin Zhao 已提交
596 597


598 599 600
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
K
Kexin Zhao 已提交
601 602 603 604 605 606 607 608 609 610
class TestFP16WithInput1x1Filter1x1CUDNN(TestWithInput1x1Filter1x1):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
611 612


613 614 615 616
class TestCUDNNExhaustiveSearch(TestCUDNN):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.exhaustive_search = True
617
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
618 619


L
liym27 已提交
620 621 622
# ---- test asymmetric padding ----


C
cnn 已提交
623
class TestConv3DOp_2(OpTest):
L
liym27 已提交
624 625
    def setUp(self):
        self.op_type = "conv3d"
W
wanghuancoder 已提交
626
        self.python_api = conv3d_wrapper
L
liym27 已提交
627 628 629
        self.use_cudnn = False
        self.use_mkldnn = False
        self.data_format = "NCDHW"
630
        self.dtype = np.float64
L
liym27 已提交
631 632 633 634 635 636 637 638 639 640 641 642
        self.init_kernel_type()
        self.init_group()
        self.init_dilation()
        self.init_data_format()
        self.init_test_case()
        self.init_paddings()

        self.init_test_case_2()

        conv3d_param = {
            'stride': self.stride,
            'pad': self.pad,
643
            'dilations': self.dilations,
L
liym27 已提交
644 645 646 647
        }

        input = np.random.random(self.input_size).astype(self.dtype)
        filter = np.random.random(self.filter_size).astype(self.dtype)
648 649 650 651 652 653 654 655
        output = conv3d_forward_naive(
            input,
            filter,
            self.groups,
            conv3d_param,
            self.padding_algorithm,
            self.data_format,
        ).astype(self.dtype)
L
liym27 已提交
656 657 658

        self.inputs = {
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
659
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter),
L
liym27 已提交
660 661 662 663 664 665 666 667 668
        }
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
            'padding_algorithm': self.padding_algorithm,
            'groups': self.groups,
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
669
            'data_format': self.data_format,
L
liym27 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683
        }
        self.outputs = {'Output': output}

    def has_cudnn(self):
        return core.is_compiled_with_cuda() and self.use_cudnn

    def test_check_output(self):
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
        self.check_output_with_place(place, atol=1e-5)

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
684 685 686
        self.check_grad_with_place(
            place, {'Input', 'Filter'}, 'Output', max_relative_error=0.03
        )
L
liym27 已提交
687 688 689 690 691

    def test_check_grad_no_filter(self):
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
692 693 694 695 696 697 698
        self.check_grad_with_place(
            place,
            ['Input'],
            'Output',
            max_relative_error=0.03,
            no_grad_set=set(['Filter']),
        )
L
liym27 已提交
699 700 701 702 703

    def test_check_grad_no_input(self):
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
704 705 706 707 708 709 710
        self.check_grad_with_place(
            place,
            ['Filter'],
            'Output',
            max_relative_error=0.03,
            no_grad_set=set(['Input']),
        )
L
liym27 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738

    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3, 3]

    def init_test_case_2(self):
        pass

    def init_dilation(self):
        self.dilations = [1, 1, 1]

    def init_group(self):
        self.groups = 1

    def init_kernel_type(self):
        pass

    def init_paddings(self):
        self.pad = [0, 0, 0]
        self.padding_algorithm = "EXPLICIT"

    def init_data_format(self):
        self.data_format = "NCDHW"


C
cnn 已提交
739
class TestConv3DOp_AsyPadding(TestConv3DOp_2):
740 741 742 743 744 745 746
    def init_test_case(self):
        self.stride = [1, 1, 2]
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3, 3]

L
liym27 已提交
747 748 749 750 751
    def init_paddings(self):
        self.pad = [1, 0, 1, 0, 0, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
752
class TestConv3DOp_DiffDataInDiffDim(TestConv3DOp_2):
753 754 755 756 757 758 759 760 761 762 763 764
    def init_test_case(self):
        self.stride = [1, 1, 2]
        self.input_size = [2, 3, 4, 5, 5]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 4, 3]

    def init_paddings(self):
        self.pad = [1, 0, 1, 0, 0, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
765 766 767
create_test_padding_SAME_class(TestConv3DOp_DiffDataInDiffDim)
create_test_padding_VALID_class(TestConv3DOp_DiffDataInDiffDim)
create_test_channel_last_class(TestConv3DOp_DiffDataInDiffDim)
768 769


C
cnn 已提交
770
class TestCase1_AsyPadding(TestConv3DOp_2):
L
liym27 已提交
771 772 773 774 775 776 777 778 779 780 781 782
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3, 3]

    def init_paddings(self):
        self.pad = [0, 0, 1, 0, 0, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
783
class TestWithGroup1_AsyPadding(TestConv3DOp_2):
L
liym27 已提交
784 785 786 787 788 789 790 791
    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [1, 1, 1, 0, 0, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
792
class TestWithGroup2_AsyPadding(TestConv3DOp_2):
L
liym27 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3, 3]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [1, 1, 0, 1, 0, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
808
class TestWith1x1_AsyPadding(TestConv3DOp_2):
L
liym27 已提交
809 810 811 812 813
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 4, 4, 4]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
814
        self.filter_size = [120, f_c, 1, 1, 1]
L
liym27 已提交
815 816 817 818 819 820 821 822 823 824 825 826

    def init_dilation(self):
        self.dilations = [1, 1, 1]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 0, 1, 0, 0, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
827
class TestWithDilation_AsyPadding(TestConv3DOp_2):
L
liym27 已提交
828 829 830 831 832
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 6, 6, 6]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
833
        self.filter_size = [24, f_c, 2, 2, 2]
L
liym27 已提交
834 835 836 837 838 839 840 841 842 843 844 845

    def init_dilation(self):
        self.dilations = [2, 2, 2]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 0, 1, 0, 1, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
846
create_test_cudnn_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
847 848 849 850 851
create_test_cudnn_class(TestWithGroup1_AsyPadding)
create_test_cudnn_class(TestWithGroup2_AsyPadding)
create_test_cudnn_class(TestWith1x1_AsyPadding)
create_test_cudnn_class(TestWithDilation_AsyPadding)

C
cnn 已提交
852
create_test_padding_SAME_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
853 854 855
create_test_padding_SAME_class(TestWithGroup1_AsyPadding)
create_test_padding_SAME_class(TestWith1x1_AsyPadding)

C
cnn 已提交
856
create_test_padding_VALID_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
857 858 859
create_test_padding_VALID_class(TestWithGroup1_AsyPadding)
create_test_padding_VALID_class(TestWith1x1_AsyPadding)

C
cnn 已提交
860
create_test_cudnn_padding_SAME_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
861 862 863
create_test_cudnn_padding_SAME_class(TestWithGroup1_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWith1x1_AsyPadding)

C
cnn 已提交
864
create_test_cudnn_padding_VALID_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
865 866 867
create_test_cudnn_padding_VALID_class(TestWithGroup1_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWith1x1_AsyPadding)

C
cnn 已提交
868
create_test_channel_last_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
869 870 871
create_test_channel_last_class(TestWithGroup1_AsyPadding)
create_test_channel_last_class(TestWith1x1_AsyPadding)

C
cnn 已提交
872
create_test_channel_last_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
873 874 875
create_test_channel_last_class(TestWithGroup1_AsyPadding)
create_test_channel_last_class(TestWith1x1_AsyPadding)

C
cnn 已提交
876
create_test_cudnn_channel_last_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
877 878 879
create_test_cudnn_channel_last_class(TestWithGroup1_AsyPadding)
create_test_cudnn_channel_last_class(TestWith1x1_AsyPadding)

C
cnn 已提交
880
create_test_cudnn_channel_last_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
881 882 883
create_test_cudnn_channel_last_class(TestWithGroup1_AsyPadding)
create_test_cudnn_channel_last_class(TestWith1x1_AsyPadding)

武毅 已提交
884 885
# FIXME(typhoonzero): find a way to determine if
# using cudnn > 6 in python
886
# class TestWithDilationCUDNN(TestWithDilation):
武毅 已提交
887
#     def init_op_type(self):
888
#         self.op_type = "conv3d"
武毅 已提交
889

L
liym27 已提交
890 891

# --------- test python API ---------------
C
cnn 已提交
892
class TestConv3DAPI(unittest.TestCase):
L
liym27 已提交
893
    def test_api(self):
W
wanghuancoder 已提交
894 895 896 897 898 899
        with paddle_static_guard():
            input_NDHWC = paddle.static.data(
                name="input_NDHWC",
                shape=[2, 5, 5, 5, 3],
                dtype="float32",
            )
L
liym27 已提交
900

W
wanghuancoder 已提交
901 902 903 904 905
            input_NCDHW = paddle.static.data(
                name="input_NCDHW",
                shape=[2, 3, 5, 5, 3],
                dtype="float32",
            )
L
liym27 已提交
906

907
            paddle.static.nn.conv3d(
W
wanghuancoder 已提交
908
                input=input_NDHWC,
909
                num_filters=3,
W
wanghuancoder 已提交
910 911
                filter_size=[3, 3, 3],
                stride=[1, 1, 1],
912
                padding=0,
W
wanghuancoder 已提交
913
                dilation=[1, 1, 1],
914 915 916
                groups=1,
                data_format="NCDHW",
            )
L
liym27 已提交
917

918
            paddle.static.nn.conv3d(
W
wanghuancoder 已提交
919
                input=input_NCDHW,
920 921 922
                num_filters=3,
                filter_size=[3, 3, 3],
                stride=[1, 1, 1],
W
wanghuancoder 已提交
923
                padding=[1, 2, 1, 0, 1, 0],
924 925
                dilation=[1, 1, 1],
                groups=1,
W
wanghuancoder 已提交
926
                data_format="NCDHW",
927
            )
L
liym27 已提交
928

929
            paddle.static.nn.conv3d(
W
wanghuancoder 已提交
930
                input=input_NCDHW,
931
                num_filters=3,
W
wanghuancoder 已提交
932 933 934 935
                filter_size=[3, 3, 3],
                stride=[1, 1, 1],
                padding=[[0, 0], [0, 0], [1, 1], [1, 1], [1, 1]],
                dilation=[1, 1, 1],
936 937 938
                groups=1,
                data_format="NCDHW",
            )
L
liym27 已提交
939

940
            paddle.static.nn.conv3d(
W
wanghuancoder 已提交
941
                input=input_NDHWC,
942
                num_filters=3,
W
wanghuancoder 已提交
943 944 945 946
                filter_size=[3, 3, 3],
                stride=[1, 1, 1],
                padding=[[0, 0], [1, 1], [1, 1], [1, 1], [0, 0]],
                dilation=[1, 1, 1],
947
                groups=1,
W
wanghuancoder 已提交
948
                data_format="NDHWC",
949
            )
L
liym27 已提交
950

951
            paddle.static.nn.conv3d(
W
wanghuancoder 已提交
952
                input=input_NCDHW,
953
                num_filters=3,
W
wanghuancoder 已提交
954 955 956 957
                filter_size=[3, 3, 3],
                stride=[1, 1, 1],
                padding="SAME",
                dilation=[1, 1, 1],
958
                groups=1,
W
wanghuancoder 已提交
959
                data_format="NCDHW",
960
            )
L
liym27 已提交
961

962
            paddle.static.nn.conv3d(
W
wanghuancoder 已提交
963
                input=input_NCDHW,
964
                num_filters=3,
W
wanghuancoder 已提交
965 966 967 968
                filter_size=[3, 3, 3],
                stride=[1, 1, 1],
                padding="VALID",
                dilation=[1, 1, 1],
969
                groups=1,
W
wanghuancoder 已提交
970
                data_format="NCDHW",
971
            )
L
liym27 已提交
972 973


W
wanghuancoder 已提交
974 975 976 977 978 979 980
class TestConv3DAPI_Error(unittest.TestCase):
    def test_api(self):
        with paddle_static_guard():
            input = paddle.static.data(
                name="input",
                shape=[2, 5, 5, 5, 4],
                dtype="float32",
981
            )
L
liym27 已提交
982

W
wanghuancoder 已提交
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
            # ValueError: cudnn
            def run_1():
                paddle.static.nn.conv3d(
                    input=input,
                    num_filters=3,
                    filter_size=3,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=1,
                    use_cudnn=[0],
                    data_format="NCDHW",
                )

            self.assertRaises(ValueError, run_1)

            # ValueError: data_format
            def run_2():
                paddle.static.nn.conv3d(
                    input=input,
                    num_filters=3,
                    filter_size=[3, 3, 3],
                    stride=[1, 1, 1],
                    padding=0,
                    dilation=[1, 1, 1],
                    groups=1,
                    use_cudnn=False,
                    data_format="NCHWC",
                )

            self.assertRaises(ValueError, run_2)

            # ValueError: padding
            def run_3():
                paddle.static.nn.conv3d(
                    input=input,
                    num_filters=3,
                    filter_size=3,
                    stride=1,
                    padding="SAMEE",
                    dilation=1,
                    groups=1,
                    use_cudnn=False,
                    data_format="NCDHW",
                )

            self.assertRaises(ValueError, run_3)

            def run_4():
                paddle.static.nn.conv3d(
                    input=input,
                    num_filters=3,
                    filter_size=3,
                    stride=1,
                    padding=[[0, 1], [0, 0], [0, 1], [0, 1], [0, 1]],
                    dilation=1,
                    groups=1,
                    use_cudnn=False,
                    data_format="NCDHW",
                )

            self.assertRaises(ValueError, run_4)

            def run_5():
                paddle.static.nn.conv3d(
                    input=input,
                    num_filters=3,
                    filter_size=0,
                    stride=0,
                    padding=[[0, 1], [0, 1], [0, 1], [0, 1], [0, 1]],
                    dilation=1,
                    groups=1,
                    use_cudnn=False,
                    data_format="NDHWC",
                )

            self.assertRaises(ValueError, run_5)

            # ValueError: channel dimmention
            x = paddle.static.data(
                name="x",
                shape=[2, 5, 5, 5, -1],
                dtype="float32",
1066
            )
1067

W
wanghuancoder 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
            def run_6():
                paddle.static.nn.conv3d(
                    input=x,
                    num_filters=3,
                    filter_size=3,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=1,
                    use_cudnn=False,
                    data_format="NDHWC",
                )

            self.assertRaises(ValueError, run_6)

            # ValueError: groups
            def run_7():
                paddle.static.nn.conv3d(
                    input=input,
                    num_filters=3,
                    filter_size=3,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=3,
                    use_cudnn=False,
                    data_format="NDHWC",
                )

            self.assertRaises(ValueError, run_7)

            # ValueError: filter num
            def run_8():
                paddle.static.nn.conv3d(
                    input=input,
                    num_filters=0,
                    filter_size=0,
                    stride=0,
                    padding=0,
                    dilation=0,
                    groups=1,
                    use_cudnn=False,
                    data_format="NDHWC",
                )

            self.assertRaises(ValueError, run_8)
1114

L
liym27 已提交
1115

C
chengduoZH 已提交
1116 1117
if __name__ == '__main__':
    unittest.main()