test_conv3d_op.py 31.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
chengduoZH 已提交
15
import unittest
16

17
import numpy as np
18
from op_test import OpTest
19

H
hong 已提交
20
import paddle
21
import paddle.fluid.core as core
C
chengduoZH 已提交
22 23


24 25 26 27 28 29 30 31
def conv3d_forward_naive(
    input,
    filter,
    group,
    conv_param,
    padding_algorithm='EXPLICIT',
    data_format="NCDHW",
):
L
liym27 已提交
32 33

    if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
34 35 36 37
        raise ValueError(
            "Unknown Attr(padding_algorithm): '%s'. "
            "It can only be 'SAME' or 'VALID'." % str(padding_algorithm)
        )
L
liym27 已提交
38 39

    if data_format not in ["NCDHW", "NDHWC"]:
40 41 42 43
        raise ValueError(
            "Unknown Attr(data_format): '%s' ."
            "It can only be 'NCDHW' or 'NDHWC'." % str(data_format)
        )
L
liym27 已提交
44

45
    channel_last = data_format == "NDHWC"
L
liym27 已提交
46 47 48
    if channel_last:
        input = np.transpose(input, [0, 4, 1, 2, 3])

49
    in_n, in_c, in_d, in_h, in_w = input.shape
L
liym27 已提交
50 51 52 53

    f_n, f_c, f_d, f_h, f_w = filter.shape
    out_n = in_n
    out_c = f_n
54 55
    assert f_c * group == in_c
    assert np.mod(out_c, group) == 0
M
minqiyang 已提交
56
    sub_out_c = out_c // group
L
liym27 已提交
57
    sub_f_n = f_n // group
58

59 60 61 62 63
    stride, pad, dilation = (
        conv_param['stride'],
        conv_param['pad'],
        conv_param['dilations'],
    )
C
chengduoZH 已提交
64

L
liym27 已提交
65 66 67
    # update pad and dilation
    def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
        padding = []
68 69 70
        for input_size, filter_size, stride_size in zip(
            input_shape, pool_size, pool_stride
        ):
L
liym27 已提交
71
            out_size = int((input_size + stride_size - 1) / stride_size)
72
            pad_sum = np.max(
73 74
                ((out_size - 1) * stride_size + filter_size - input_size, 0)
            )
L
liym27 已提交
75 76 77 78 79 80 81 82 83 84 85
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    ksize = filter.shape[2:5]
    if padding_algorithm == "VALID":
        pad = [0, 0, 0, 0, 0, 0]
    elif padding_algorithm == "SAME":
        dilation = [1, 1, 1]
86
        input_data_shape = input.shape[2:5]
L
liym27 已提交
87 88 89 90 91 92 93 94 95 96
        pad = _get_padding_with_SAME(input_data_shape, ksize, stride)

    pad_d_0, pad_d_1 = pad[0], pad[0]
    pad_h_0, pad_h_1 = pad[1], pad[1]
    pad_w_0, pad_w_1 = pad[2], pad[2]
    if len(pad) == 6:
        pad_d_0, pad_d_1 = pad[0], pad[1]
        pad_h_0, pad_h_1 = pad[2], pad[3]
        pad_w_0, pad_w_1 = pad[4], pad[5]

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    out_d = (
        1
        + (in_d + pad_d_0 + pad_d_1 - (dilation[0] * (f_d - 1) + 1))
        // stride[0]
    )
    out_h = (
        1
        + (in_h + pad_h_0 + pad_h_1 - (dilation[1] * (f_h - 1) + 1))
        // stride[1]
    )
    out_w = (
        1
        + (in_w + pad_w_0 + pad_w_1 - (dilation[2] * (f_w - 1) + 1))
        // stride[2]
    )
C
chengduoZH 已提交
112

113 114
    out = np.zeros((in_n, out_c, out_d, out_h, out_w))

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    d_bolck_d = dilation[0] * (f_d - 1) + 1
    d_bolck_h = dilation[1] * (f_h - 1) + 1
    d_bolck_w = dilation[2] * (f_w - 1) + 1

    input_pad = np.pad(
        input,
        (
            (0, 0),
            (0, 0),
            (pad_d_0, pad_d_1),
            (pad_h_0, pad_h_1),
            (pad_w_0, pad_w_1),
        ),
        mode='constant',
        constant_values=0,
    )
C
chengduoZH 已提交
131

L
liym27 已提交
132
    filter_dilation = np.zeros((f_n, f_c, d_bolck_d, d_bolck_h, d_bolck_w))
133 134 135 136 137 138 139
    filter_dilation[
        :,
        :,
        0 : d_bolck_d : dilation[0],
        0 : d_bolck_h : dilation[1],
        0 : d_bolck_w : dilation[2],
    ] = filter
C
chengduoZH 已提交
140

141 142 143 144
    for d in range(out_d):
        for i in range(out_h):
            for j in range(out_w):
                for g in range(group):
145 146 147 148 149 150 151 152 153 154 155
                    input_pad_masked = input_pad[
                        :,
                        g * f_c : (g + 1) * f_c,
                        d * stride[0] : d * stride[0] + d_bolck_d,
                        i * stride[1] : i * stride[1] + d_bolck_h,
                        j * stride[2] : j * stride[2] + d_bolck_w,
                    ]

                    f_sub = filter_dilation[
                        g * sub_f_n : (g + 1) * sub_f_n, :, :, :, :
                    ]
156
                    for k in range(sub_out_c):
157 158 159 160
                        out[:, g * sub_out_c + k, d, i, j] = np.sum(
                            input_pad_masked * f_sub[k, :, :, :, :],
                            axis=(1, 2, 3, 4),
                        )
L
liym27 已提交
161 162
    if channel_last:
        out = np.transpose(out, [0, 2, 3, 4, 1])
163 164 165
    return out


L
liym27 已提交
166
def create_test_cudnn_class(parent):
167 168 169
    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
L
liym27 已提交
170 171 172
    class TestCUDNNCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
173 174 175
            self.dtype = (
                np.float32 if core.is_compiled_with_rocm() else np.float64
            )
L
liym27 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

    cls_name = "{0}_{1}".format(parent.__name__, "CUDNN")
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase


def create_test_padding_SAME_class(parent):
    class TestPaddingSMAECase(parent):
        def init_paddings(self):
            self.pad = [0, 0, 0]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp")
    TestPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestPaddingSMAECase


def create_test_padding_VALID_class(parent):
    class TestPaddingVALIDCase(parent):
        def init_paddings(self):
            self.pad = [1, 1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp")
    TestPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestPaddingVALIDCase


def create_test_cudnn_padding_SAME_class(parent):
205 206 207
    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
L
liym27 已提交
208 209 210
    class TestCUDNNPaddingSMAECase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
211 212 213
            self.dtype = (
                np.float32 if core.is_compiled_with_rocm() else np.float64
            )
L
liym27 已提交
214 215 216 217 218 219 220 221 222 223 224

        def init_paddings(self):
            self.pad = [1, 1, 1]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingSAMEOp")
    TestCUDNNPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingSMAECase


def create_test_cudnn_padding_VALID_class(parent):
225 226 227
    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
L
liym27 已提交
228 229 230
    class TestCUDNNPaddingVALIDCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
231 232 233
            self.dtype = (
                np.float32 if core.is_compiled_with_rocm() else np.float64
            )
L
liym27 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258

        def init_paddings(self):
            self.pad = [1, 1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingVALIDOp")
    TestCUDNNPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingVALIDCase


def create_test_channel_last_class(parent):
    class TestChannelLastCase(parent):
        def init_data_format(self):
            self.data_format = "NDHWC"

        def init_test_case_2(self):
            N, C, D, H, W = self.input_size
            self.input_size = [N, D, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "ChannelLast")
    TestChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestChannelLastCase


def create_test_cudnn_channel_last_class(parent):
259 260 261
    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
L
liym27 已提交
262 263 264
    class TestCudnnChannelLastCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
265 266 267
            self.dtype = (
                np.float32 if core.is_compiled_with_rocm() else np.float64
            )
L
liym27 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280

        def init_data_format(self):
            self.data_format = "NDHWC"

        def init_test_case_2(self):
            N, C, D, H, W = self.input_size
            self.input_size = [N, D, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnChannelLast")
    TestCudnnChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestCudnnChannelLastCase


C
cnn 已提交
281
class TestConv3DOp(OpTest):
C
chengduoZH 已提交
282
    def setUp(self):
K
Kexin Zhao 已提交
283
        self.op_type = "conv3d"
284
        self.use_cudnn = False
285 286
        self.use_mkldnn = False
        self.data_format = "AnyLayout"
287
        self.dtype = np.float64
K
Kexin Zhao 已提交
288
        self.init_kernel_type()
289
        self.init_group()
C
chengduoZH 已提交
290
        self.init_dilation()
291 292
        self.init_test_case()

C
chengduoZH 已提交
293 294 295
        conv3d_param = {
            'stride': self.stride,
            'pad': self.pad,
296
            'dilations': self.dilations,
C
chengduoZH 已提交
297
        }
K
Kexin Zhao 已提交
298 299 300

        input = np.random.random(self.input_size).astype(self.dtype)
        filter = np.random.random(self.filter_size).astype(self.dtype)
L
liym27 已提交
301 302 303 304
        output = conv3d_forward_naive(
            input,
            filter,
            self.groups,
305 306
            conv3d_param,
        ).astype(self.dtype)
C
chengduoZH 已提交
307

K
Kexin Zhao 已提交
308 309
        self.inputs = {
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
310
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter),
K
Kexin Zhao 已提交
311
        }
C
chengduoZH 已提交
312
        self.attrs = {
313 314
            'strides': self.stride,
            'paddings': self.pad,
C
chengduoZH 已提交
315
            'groups': self.groups,
K
Kexin Zhao 已提交
316
            'dilations': self.dilations,
317 318
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
319
            'data_format': self.data_format,
C
chengduoZH 已提交
320 321 322
        }
        self.outputs = {'Output': output}

323
    def has_cudnn(self):
324 325
        return core.is_compiled_with_cuda() and self.use_cudnn

C
chengduoZH 已提交
326
    def test_check_output(self):
327
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
328
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
329
        self.check_output_with_place(
330
            place, atol=1e-5, check_dygraph=(not self.use_mkldnn)
331
        )
C
chengduoZH 已提交
332 333

    def test_check_grad(self):
K
Kexin Zhao 已提交
334 335
        if self.dtype == np.float16:
            return
336
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
337
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
338 339 340 341 342
        self.check_grad_with_place(
            place,
            {'Input', 'Filter'},
            'Output',
            max_relative_error=0.03,
343
            check_dygraph=(not self.use_mkldnn),
344
        )
C
chengduoZH 已提交
345

C
chengduoZH 已提交
346
    def test_check_grad_no_filter(self):
K
Kexin Zhao 已提交
347 348
        if self.dtype == np.float16:
            return
349
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
350
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
351 352 353 354 355 356
        self.check_grad_with_place(
            place,
            ['Input'],
            'Output',
            max_relative_error=0.03,
            no_grad_set=set(['Filter']),
357
            check_dygraph=(not self.use_mkldnn),
358
        )
C
chengduoZH 已提交
359 360

    def test_check_grad_no_input(self):
K
Kexin Zhao 已提交
361 362
        if self.dtype == np.float16:
            return
363
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
364
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
365 366 367 368 369 370
        self.check_grad_with_place(
            place,
            ['Filter'],
            'Output',
            max_relative_error=0.03,
            no_grad_set=set(['Input']),
371
            check_dygraph=(not self.use_mkldnn),
372
        )
C
chengduoZH 已提交
373

374 375 376
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
C
chengduoZH 已提交
377
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
378
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
379
        f_c = self.input_size[1] // self.groups
380 381
        self.filter_size = [6, f_c, 3, 3, 3]

L
liym27 已提交
382 383 384
    def init_test_case_2(self):
        pass

C
chengduoZH 已提交
385 386 387
    def init_dilation(self):
        self.dilations = [1, 1, 1]

388
    def init_group(self):
C
chengduoZH 已提交
389 390
        self.groups = 1

K
Kexin Zhao 已提交
391 392
    def init_kernel_type(self):
        pass
393

C
chengduoZH 已提交
394

C
cnn 已提交
395
class TestCase1(TestConv3DOp):
C
chengduoZH 已提交
396 397 398
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
C
chengduoZH 已提交
399
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
C
chengduoZH 已提交
400
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
401
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
402 403 404
        self.filter_size = [6, f_c, 3, 3, 3]


C
cnn 已提交
405
class TestWithGroup1(TestConv3DOp):
C
chengduoZH 已提交
406 407
    def init_group(self):
        self.groups = 3
C
chengduoZH 已提交
408 409


C
chengduoZH 已提交
410
class TestWithGroup2(TestCase1):
411
    def init_group(self):
C
chengduoZH 已提交
412 413
        self.groups = 3

414

C
cnn 已提交
415
class TestWith1x1(TestConv3DOp):
C
chengduoZH 已提交
416 417 418
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
L
liym27 已提交
419
        self.input_size = [2, 3, 4, 4, 4]
C
chengduoZH 已提交
420
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
421
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
422
        self.filter_size = [120, f_c, 1, 1, 1]
C
chengduoZH 已提交
423 424 425

    def init_dilation(self):
        self.dilations = [1, 1, 1]
C
chengduoZH 已提交
426

C
chengduoZH 已提交
427 428 429
    def init_group(self):
        self.groups = 3

C
chengduoZH 已提交
430

C
cnn 已提交
431
class TestWithInput1x1Filter1x1(TestConv3DOp):
432 433 434
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
Z
zhupengyang 已提交
435
        self.input_size = [40, 3, 1, 1, 1]
436
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
437
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
438
        self.filter_size = [120, f_c, 1, 1, 1]
439 440 441 442 443 444 445 446

    def init_dilation(self):
        self.dilations = [1, 1, 1]

    def init_group(self):
        self.groups = 3


C
cnn 已提交
447
class TestWithDilation(TestConv3DOp):
C
chengduoZH 已提交
448 449 450
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
L
liym27 已提交
451
        self.input_size = [2, 3, 6, 6, 6]
C
chengduoZH 已提交
452
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
453
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
454
        self.filter_size = [24, f_c, 2, 2, 2]
C
chengduoZH 已提交
455 456 457 458 459 460

    def init_dilation(self):
        self.dilations = [2, 2, 2]

    def init_group(self):
        self.groups = 3
C
chengduoZH 已提交
461

C
chengduoZH 已提交
462

463
# ---------------- Conv3DCUDNN ----------------
L
liym27 已提交
464 465


466 467 468
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
C
cnn 已提交
469
class TestCUDNN(TestConv3DOp):
K
Kexin Zhao 已提交
470
    def init_kernel_type(self):
471
        self.use_cudnn = True
472
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
K
Kexin Zhao 已提交
473 474


475 476 477
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
C
cnn 已提交
478
class TestFP16CUDNN(TestConv3DOp):
K
Kexin Zhao 已提交
479 480 481 482 483 484 485 486 487
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
武毅 已提交
488 489


490 491 492
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
493
class TestWithGroup1CUDNN(TestWithGroup1):
K
Kexin Zhao 已提交
494
    def init_kernel_type(self):
495
        self.use_cudnn = True
496
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
K
Kexin Zhao 已提交
497 498


499 500 501
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
K
Kexin Zhao 已提交
502 503 504 505 506 507 508 509 510 511
class TestFP16WithGroup1CUDNN(TestWithGroup1):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
武毅 已提交
512 513


514 515 516
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
517
class TestWithGroup2CUDNN(TestWithGroup2):
K
Kexin Zhao 已提交
518
    def init_kernel_type(self):
519
        self.use_cudnn = True
520
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
K
Kexin Zhao 已提交
521 522


523 524 525
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
K
Kexin Zhao 已提交
526 527 528 529 530 531 532 533 534 535
class TestFP16WithGroup2CUDNN(TestWithGroup2):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
武毅 已提交
536 537


538 539 540
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
541
class TestWith1x1CUDNN(TestWith1x1):
K
Kexin Zhao 已提交
542
    def init_kernel_type(self):
543
        self.use_cudnn = True
544
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
K
Kexin Zhao 已提交
545 546


547 548 549
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
K
Kexin Zhao 已提交
550 551 552 553 554 555 556 557 558 559
class TestFP16With1x1CUDNN(TestWith1x1):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
武毅 已提交
560 561


562 563 564
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
565
class TestWithInput1x1Filter1x1CUDNN(TestWithInput1x1Filter1x1):
K
Kexin Zhao 已提交
566
    def init_kernel_type(self):
567
        self.use_cudnn = True
568
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
K
Kexin Zhao 已提交
569 570


571 572 573
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
K
Kexin Zhao 已提交
574 575 576 577 578 579 580 581 582 583
class TestFP16WithInput1x1Filter1x1CUDNN(TestWithInput1x1Filter1x1):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
584 585


586 587 588 589
class TestCUDNNExhaustiveSearch(TestCUDNN):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.exhaustive_search = True
590
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
591 592


L
liym27 已提交
593 594 595
# ---- test asymmetric padding ----


C
cnn 已提交
596
class TestConv3DOp_2(OpTest):
L
liym27 已提交
597 598 599 600 601
    def setUp(self):
        self.op_type = "conv3d"
        self.use_cudnn = False
        self.use_mkldnn = False
        self.data_format = "NCDHW"
602
        self.dtype = np.float64
L
liym27 已提交
603 604 605 606 607 608 609 610 611 612 613 614
        self.init_kernel_type()
        self.init_group()
        self.init_dilation()
        self.init_data_format()
        self.init_test_case()
        self.init_paddings()

        self.init_test_case_2()

        conv3d_param = {
            'stride': self.stride,
            'pad': self.pad,
615
            'dilations': self.dilations,
L
liym27 已提交
616 617 618 619
        }

        input = np.random.random(self.input_size).astype(self.dtype)
        filter = np.random.random(self.filter_size).astype(self.dtype)
620 621 622 623 624 625 626 627
        output = conv3d_forward_naive(
            input,
            filter,
            self.groups,
            conv3d_param,
            self.padding_algorithm,
            self.data_format,
        ).astype(self.dtype)
L
liym27 已提交
628 629 630

        self.inputs = {
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
631
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter),
L
liym27 已提交
632 633 634 635 636 637 638 639 640
        }
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
            'padding_algorithm': self.padding_algorithm,
            'groups': self.groups,
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
641
            'data_format': self.data_format,
L
liym27 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655
        }
        self.outputs = {'Output': output}

    def has_cudnn(self):
        return core.is_compiled_with_cuda() and self.use_cudnn

    def test_check_output(self):
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
        self.check_output_with_place(place, atol=1e-5)

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
656 657 658
        self.check_grad_with_place(
            place, {'Input', 'Filter'}, 'Output', max_relative_error=0.03
        )
L
liym27 已提交
659 660 661 662 663

    def test_check_grad_no_filter(self):
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
664 665 666 667 668 669 670
        self.check_grad_with_place(
            place,
            ['Input'],
            'Output',
            max_relative_error=0.03,
            no_grad_set=set(['Filter']),
        )
L
liym27 已提交
671 672 673 674 675

    def test_check_grad_no_input(self):
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
676 677 678 679 680 681 682
        self.check_grad_with_place(
            place,
            ['Filter'],
            'Output',
            max_relative_error=0.03,
            no_grad_set=set(['Input']),
        )
L
liym27 已提交
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710

    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3, 3]

    def init_test_case_2(self):
        pass

    def init_dilation(self):
        self.dilations = [1, 1, 1]

    def init_group(self):
        self.groups = 1

    def init_kernel_type(self):
        pass

    def init_paddings(self):
        self.pad = [0, 0, 0]
        self.padding_algorithm = "EXPLICIT"

    def init_data_format(self):
        self.data_format = "NCDHW"


C
cnn 已提交
711
class TestConv3DOp_AsyPadding(TestConv3DOp_2):
712 713 714 715 716 717 718
    def init_test_case(self):
        self.stride = [1, 1, 2]
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3, 3]

L
liym27 已提交
719 720 721 722 723
    def init_paddings(self):
        self.pad = [1, 0, 1, 0, 0, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
724
class TestConv3DOp_DiffDataInDiffDim(TestConv3DOp_2):
725 726 727 728 729 730 731 732 733 734 735 736
    def init_test_case(self):
        self.stride = [1, 1, 2]
        self.input_size = [2, 3, 4, 5, 5]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 4, 3]

    def init_paddings(self):
        self.pad = [1, 0, 1, 0, 0, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
737 738 739
create_test_padding_SAME_class(TestConv3DOp_DiffDataInDiffDim)
create_test_padding_VALID_class(TestConv3DOp_DiffDataInDiffDim)
create_test_channel_last_class(TestConv3DOp_DiffDataInDiffDim)
740 741


C
cnn 已提交
742
class TestCase1_AsyPadding(TestConv3DOp_2):
L
liym27 已提交
743 744 745 746 747 748 749 750 751 752 753 754
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3, 3]

    def init_paddings(self):
        self.pad = [0, 0, 1, 0, 0, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
755
class TestWithGroup1_AsyPadding(TestConv3DOp_2):
L
liym27 已提交
756 757 758 759 760 761 762 763
    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [1, 1, 1, 0, 0, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
764
class TestWithGroup2_AsyPadding(TestConv3DOp_2):
L
liym27 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3, 3]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [1, 1, 0, 1, 0, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
780
class TestWith1x1_AsyPadding(TestConv3DOp_2):
L
liym27 已提交
781 782 783 784 785
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 4, 4, 4]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
786
        self.filter_size = [120, f_c, 1, 1, 1]
L
liym27 已提交
787 788 789 790 791 792 793 794 795 796 797 798

    def init_dilation(self):
        self.dilations = [1, 1, 1]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 0, 1, 0, 0, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
799
class TestWithDilation_AsyPadding(TestConv3DOp_2):
L
liym27 已提交
800 801 802 803 804
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 6, 6, 6]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
805
        self.filter_size = [24, f_c, 2, 2, 2]
L
liym27 已提交
806 807 808 809 810 811 812 813 814 815 816 817

    def init_dilation(self):
        self.dilations = [2, 2, 2]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 0, 1, 0, 1, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
818
create_test_cudnn_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
819 820 821 822 823
create_test_cudnn_class(TestWithGroup1_AsyPadding)
create_test_cudnn_class(TestWithGroup2_AsyPadding)
create_test_cudnn_class(TestWith1x1_AsyPadding)
create_test_cudnn_class(TestWithDilation_AsyPadding)

C
cnn 已提交
824
create_test_padding_SAME_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
825 826 827
create_test_padding_SAME_class(TestWithGroup1_AsyPadding)
create_test_padding_SAME_class(TestWith1x1_AsyPadding)

C
cnn 已提交
828
create_test_padding_VALID_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
829 830 831
create_test_padding_VALID_class(TestWithGroup1_AsyPadding)
create_test_padding_VALID_class(TestWith1x1_AsyPadding)

C
cnn 已提交
832
create_test_cudnn_padding_SAME_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
833 834 835
create_test_cudnn_padding_SAME_class(TestWithGroup1_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWith1x1_AsyPadding)

C
cnn 已提交
836
create_test_cudnn_padding_VALID_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
837 838 839
create_test_cudnn_padding_VALID_class(TestWithGroup1_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWith1x1_AsyPadding)

C
cnn 已提交
840
create_test_channel_last_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
841 842 843
create_test_channel_last_class(TestWithGroup1_AsyPadding)
create_test_channel_last_class(TestWith1x1_AsyPadding)

C
cnn 已提交
844
create_test_channel_last_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
845 846 847
create_test_channel_last_class(TestWithGroup1_AsyPadding)
create_test_channel_last_class(TestWith1x1_AsyPadding)

C
cnn 已提交
848
create_test_cudnn_channel_last_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
849 850 851
create_test_cudnn_channel_last_class(TestWithGroup1_AsyPadding)
create_test_cudnn_channel_last_class(TestWith1x1_AsyPadding)

C
cnn 已提交
852
create_test_cudnn_channel_last_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
853 854 855
create_test_cudnn_channel_last_class(TestWithGroup1_AsyPadding)
create_test_cudnn_channel_last_class(TestWith1x1_AsyPadding)

武毅 已提交
856 857
# FIXME(typhoonzero): find a way to determine if
# using cudnn > 6 in python
858
# class TestWithDilationCUDNN(TestWithDilation):
武毅 已提交
859
#     def init_op_type(self):
860
#         self.op_type = "conv3d"
武毅 已提交
861

L
liym27 已提交
862 863

# --------- test python API ---------------
C
cnn 已提交
864
class TestConv3DAPI(unittest.TestCase):
L
liym27 已提交
865 866
    def test_api(self):

G
GGBond8488 已提交
867
        input_NDHWC = paddle.static.data(
868 869 870 871 872
            name="input_NDHWC",
            shape=[2, 5, 5, 5, 3],
            dtype="float32",
        )

G
GGBond8488 已提交
873
        input_NCDHW = paddle.static.data(
874 875 876 877 878
            name="input_NCDHW",
            shape=[2, 3, 5, 5, 3],
            dtype="float32",
        )

879
        paddle.static.nn.conv3d(
880 881 882 883 884 885 886 887 888 889
            input=input_NDHWC,
            num_filters=3,
            filter_size=[3, 3, 3],
            stride=[1, 1, 1],
            padding=0,
            dilation=[1, 1, 1],
            groups=1,
            data_format="NCDHW",
        )

890
        paddle.static.nn.conv3d(
891 892 893 894 895 896 897 898 899 900
            input=input_NCDHW,
            num_filters=3,
            filter_size=[3, 3, 3],
            stride=[1, 1, 1],
            padding=[1, 2, 1, 0, 1, 0],
            dilation=[1, 1, 1],
            groups=1,
            data_format="NCDHW",
        )

901
        paddle.static.nn.conv3d(
902 903 904 905 906 907 908 909 910 911
            input=input_NCDHW,
            num_filters=3,
            filter_size=[3, 3, 3],
            stride=[1, 1, 1],
            padding=[[0, 0], [0, 0], [1, 1], [1, 1], [1, 1]],
            dilation=[1, 1, 1],
            groups=1,
            data_format="NCDHW",
        )

912
        paddle.static.nn.conv3d(
913 914 915 916 917 918 919 920 921 922
            input=input_NDHWC,
            num_filters=3,
            filter_size=[3, 3, 3],
            stride=[1, 1, 1],
            padding=[[0, 0], [1, 1], [1, 1], [1, 1], [0, 0]],
            dilation=[1, 1, 1],
            groups=1,
            data_format="NDHWC",
        )

923
        paddle.static.nn.conv3d(
924 925 926 927 928 929 930 931 932 933
            input=input_NCDHW,
            num_filters=3,
            filter_size=[3, 3, 3],
            stride=[1, 1, 1],
            padding="SAME",
            dilation=[1, 1, 1],
            groups=1,
            data_format="NCDHW",
        )

934
        paddle.static.nn.conv3d(
935 936 937 938 939 940 941 942 943
            input=input_NCDHW,
            num_filters=3,
            filter_size=[3, 3, 3],
            stride=[1, 1, 1],
            padding="VALID",
            dilation=[1, 1, 1],
            groups=1,
            data_format="NCDHW",
        )
L
liym27 已提交
944 945


C
cnn 已提交
946
class TestConv3DAPI_Error(unittest.TestCase):
L
liym27 已提交
947
    def test_api(self):
G
GGBond8488 已提交
948
        input = paddle.static.data(
949 950 951 952
            name="input",
            shape=[2, 5, 5, 5, 4],
            dtype="float32",
        )
L
liym27 已提交
953 954 955

        # ValueError: cudnn
        def run_1():
956
            paddle.static.nn.conv3d(
957 958 959 960 961 962 963 964 965 966
                input=input,
                num_filters=3,
                filter_size=3,
                stride=1,
                padding=0,
                dilation=1,
                groups=1,
                use_cudnn=[0],
                data_format="NCDHW",
            )
L
liym27 已提交
967 968 969 970 971

        self.assertRaises(ValueError, run_1)

        # ValueError: data_format
        def run_2():
972
            paddle.static.nn.conv3d(
973 974 975 976 977 978 979 980 981 982
                input=input,
                num_filters=3,
                filter_size=[3, 3, 3],
                stride=[1, 1, 1],
                padding=0,
                dilation=[1, 1, 1],
                groups=1,
                use_cudnn=False,
                data_format="NCHWC",
            )
L
liym27 已提交
983 984 985 986 987

        self.assertRaises(ValueError, run_2)

        # ValueError: padding
        def run_3():
988
            paddle.static.nn.conv3d(
989 990 991 992 993 994 995 996 997 998
                input=input,
                num_filters=3,
                filter_size=3,
                stride=1,
                padding="SAMEE",
                dilation=1,
                groups=1,
                use_cudnn=False,
                data_format="NCDHW",
            )
L
liym27 已提交
999 1000 1001 1002

        self.assertRaises(ValueError, run_3)

        def run_4():
1003
            paddle.static.nn.conv3d(
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
                input=input,
                num_filters=3,
                filter_size=3,
                stride=1,
                padding=[[0, 1], [0, 0], [0, 1], [0, 1], [0, 1]],
                dilation=1,
                groups=1,
                use_cudnn=False,
                data_format="NCDHW",
            )
L
liym27 已提交
1014 1015 1016 1017

        self.assertRaises(ValueError, run_4)

        def run_5():
1018
            paddle.static.nn.conv3d(
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
                input=input,
                num_filters=3,
                filter_size=0,
                stride=0,
                padding=[[0, 1], [0, 1], [0, 1], [0, 1], [0, 1]],
                dilation=1,
                groups=1,
                use_cudnn=False,
                data_format="NDHWC",
            )
L
liym27 已提交
1029 1030 1031 1032

        self.assertRaises(ValueError, run_5)

        # ValueError: channel dimmention
G
GGBond8488 已提交
1033
        x = paddle.static.data(
1034 1035 1036 1037
            name="x",
            shape=[2, 5, 5, 5, -1],
            dtype="float32",
        )
L
liym27 已提交
1038 1039

        def run_6():
1040
            paddle.static.nn.conv3d(
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
                input=x,
                num_filters=3,
                filter_size=3,
                stride=1,
                padding=0,
                dilation=1,
                groups=1,
                use_cudnn=False,
                data_format="NDHWC",
            )
L
liym27 已提交
1051 1052 1053 1054 1055

        self.assertRaises(ValueError, run_6)

        # ValueError: groups
        def run_7():
1056
            paddle.static.nn.conv3d(
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
                input=input,
                num_filters=3,
                filter_size=3,
                stride=1,
                padding=0,
                dilation=1,
                groups=3,
                use_cudnn=False,
                data_format="NDHWC",
            )
L
liym27 已提交
1067 1068 1069

        self.assertRaises(ValueError, run_7)

1070 1071
        # ValueError: filter num
        def run_8():
1072
            paddle.static.nn.conv3d(
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
                input=input,
                num_filters=0,
                filter_size=0,
                stride=0,
                padding=0,
                dilation=0,
                groups=1,
                use_cudnn=False,
                data_format="NDHWC",
            )
1083 1084 1085

        self.assertRaises(ValueError, run_8)

L
liym27 已提交
1086

C
chengduoZH 已提交
1087
if __name__ == '__main__':
H
hong 已提交
1088
    paddle.enable_static()
C
chengduoZH 已提交
1089
    unittest.main()