test_complex_abs.py 4.3 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy as np
W
wanghuancoder 已提交
18
from eager_op_test import OpTest
19 20

import paddle
21
import paddle.fluid.dygraph as dg
22 23 24 25 26


class TestComplexAbsOp(OpTest):
    def setUp(self):
        paddle.enable_static()
27
        self.python_api = paddle.abs
28 29 30 31 32 33 34 35 36 37 38
        self.op_type = "abs"
        self.dtype = np.float64
        self.shape = (2, 3, 4, 5)
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)}
        self.outputs = {'Out': self.out}

    def init_input_output(self):
        self.x = np.random.random(self.shape).astype(
39 40
            self.dtype
        ) + 1j * np.random.random(self.shape).astype(self.dtype)
41 42 43 44 45 46 47
        self.out = np.abs(self.x)

    def init_grad_input_output(self):
        self.grad_out = np.ones(self.shape, self.dtype)
        self.grad_x = self.grad_out * (self.x / np.abs(self.x))

    def test_check_output(self):
W
wanghuancoder 已提交
48
        self.check_output()
49 50

    def test_check_grad(self):
51 52 53 54 55 56
        self.check_grad(
            ['X'],
            'Out',
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out],
        )
57 58 59 60 61 62


class TestComplexAbsOpZeroValues(OpTest):
    def setUp(self):
        paddle.enable_static()
        self.op_type = "abs"
63
        self.python_api = paddle.abs
64 65 66 67 68 69 70 71 72
        self.dtype = np.float64
        self.shape = (2, 3, 4, 5)
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)}
        self.outputs = {'Out': self.out}

    def init_input_output(self):
73 74 75
        self.x = np.zeros(self.shape).astype(self.dtype) + 1j * np.zeros(
            self.shape
        ).astype(self.dtype)
76 77 78 79 80 81 82
        self.out = np.abs(self.x)

    def init_grad_input_output(self):
        self.grad_out = np.ones(self.shape, self.dtype)
        self.grad_x = np.zeros(self.shape, self.dtype)

    def test_check_output(self):
W
wanghuancoder 已提交
83
        self.check_output()
84 85

    def test_check_grad(self):
86 87 88 89 90 91
        self.check_grad(
            ['X'],
            'Out',
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out],
        )
92 93


94 95 96 97 98 99 100 101 102 103 104 105 106
class TestAbs(unittest.TestCase):
    def setUp(self):
        self._dtypes = ["float32", "float64"]
        self._places = [paddle.CPUPlace()]
        if paddle.is_compiled_with_cuda():
            self._places.append(paddle.CUDAPlace(0))

    def test_all_positive(self):
        for dtype in self._dtypes:
            x = 1 + 10 * np.random.random([13, 3, 3]).astype(dtype)
            for place in self._places:
                with dg.guard(place):
                    y = paddle.abs(paddle.to_tensor(x))
107
                    np.testing.assert_allclose(np.abs(x), y.numpy(), rtol=1e-05)
108 109 110 111 112


class TestRealAbsOp(OpTest):
    def setUp(self):
        paddle.enable_static()
113
        self.python_api = paddle.abs
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
        self.op_type = "abs"
        self.dtype = np.float64
        self.shape = (2, 3, 4, 5)
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)}
        self.outputs = {'Out': self.out}

    def init_input_output(self):
        self.x = 1 + np.random.random(self.shape).astype(self.dtype)
        self.out = np.abs(self.x)

    def init_grad_input_output(self):
        self.grad_out = np.ones(self.shape, self.dtype)
        self.grad_x = self.grad_out * (self.x / np.abs(self.x))

    def test_check_output(self):
W
wanghuancoder 已提交
132
        self.check_output()
133 134

    def test_check_grad(self):
135 136 137 138 139 140
        self.check_grad(
            ['X'],
            'Out',
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out],
        )
141 142


143 144
if __name__ == '__main__':
    unittest.main()