test_complex_abs.py 4.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function, division

import unittest
import numpy as np

import paddle
21
import paddle.fluid.dygraph as dg
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
from op_test import OpTest


class TestComplexAbsOp(OpTest):
    def setUp(self):
        paddle.enable_static()
        self.op_type = "abs"
        self.dtype = np.float64
        self.shape = (2, 3, 4, 5)
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)}
        self.outputs = {'Out': self.out}

    def init_input_output(self):
        self.x = np.random.random(self.shape).astype(
            self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype)
        self.out = np.abs(self.x)

    def init_grad_input_output(self):
        self.grad_out = np.ones(self.shape, self.dtype)
        self.grad_x = self.grad_out * (self.x / np.abs(self.x))

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(
            ['X'],
            'Out',
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out])


class TestComplexAbsOpZeroValues(OpTest):
    def setUp(self):
        paddle.enable_static()
        self.op_type = "abs"
        self.dtype = np.float64
        self.shape = (2, 3, 4, 5)
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)}
        self.outputs = {'Out': self.out}

    def init_input_output(self):
        self.x = np.zeros(self.shape).astype(self.dtype) + 1J * np.zeros(
            self.shape).astype(self.dtype)
        self.out = np.abs(self.x)

    def init_grad_input_output(self):
        self.grad_out = np.ones(self.shape, self.dtype)
        self.grad_x = np.zeros(self.shape, self.dtype)

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(
            ['X'],
            'Out',
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out])


89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
class TestAbs(unittest.TestCase):
    def setUp(self):
        self._dtypes = ["float32", "float64"]
        self._places = [paddle.CPUPlace()]
        if paddle.is_compiled_with_cuda():
            self._places.append(paddle.CUDAPlace(0))

    def test_all_positive(self):
        for dtype in self._dtypes:
            x = 1 + 10 * np.random.random([13, 3, 3]).astype(dtype)
            for place in self._places:
                with dg.guard(place):
                    y = paddle.abs(paddle.to_tensor(x))
                    self.assertTrue(np.allclose(np.abs(x), y.numpy()))


class TestRealAbsOp(OpTest):
    def setUp(self):
        paddle.enable_static()
        self.op_type = "abs"
        self.dtype = np.float64
        self.shape = (2, 3, 4, 5)
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)}
        self.outputs = {'Out': self.out}

    def init_input_output(self):
        self.x = 1 + np.random.random(self.shape).astype(self.dtype)
        self.out = np.abs(self.x)

    def init_grad_input_output(self):
        self.grad_out = np.ones(self.shape, self.dtype)
        self.grad_x = self.grad_out * (self.x / np.abs(self.x))

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(
            ['X'],
            'Out',
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out])


136 137
if __name__ == '__main__':
    unittest.main()