depthwise_conv.h 71.2 KB
Newer Older
H
hong 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zlx 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hong 已提交
15
#pragma once
A
Abhinav Arora 已提交
16
#include <vector>
17

H
hong 已提交
18 19 20 21
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/phi/core/hostdevice.h"

22 23 24 25 26 27 28
#ifdef __NVCC__
#include <cub/cub.cuh>
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
H
hong 已提交
29

30 31
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
32
#include "paddle/phi/kernels/funcs/math_function.h"
Z
zlx 已提交
33 34 35 36 37

namespace paddle {
namespace operators {
namespace math {

H
hong 已提交
38 39 40 41 42 43 44 45 46 47 48 49
using DataLayout = framework::DataLayout;

/*
 * \brief Compute the depthwise convolution which include
 * forward process and backpropagation process
 */
template <typename DeviceContext,
          typename T,
          bool fuse_relu_before_conv = false>
class DepthwiseConvFunctor {
 public:
  void operator()(const DeviceContext& context,
50 51
                  const phi::DenseTensor& input,
                  const phi::DenseTensor& filter,
H
hong 已提交
52 53 54
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::vector<int>& dilations,
55
                  phi::DenseTensor* output,
H
hong 已提交
56 57 58 59 60 61 62 63 64
                  const DataLayout data_layout = DataLayout::kNCHW);
};

template <typename DeviceContext,
          typename T,
          bool fuse_relu_before_conv = false>
class DepthwiseConvInputGradFunctor {
 public:
  void operator()(const DeviceContext& context,
65 66 67
                  const phi::DenseTensor& input,
                  const phi::DenseTensor& filter,
                  const phi::DenseTensor& output_grad,
H
hong 已提交
68 69 70
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::vector<int>& dilations,
71
                  phi::DenseTensor* input_grad,
H
hong 已提交
72 73 74 75 76 77 78 79 80
                  const DataLayout data_layout = DataLayout::kNCHW);
};

template <typename DeviceContext,
          typename T,
          bool fuse_relu_before_conv = false>
class DepthwiseConvFilterGradFunctor {
 public:
  void operator()(const DeviceContext& context,
81 82
                  const phi::DenseTensor& input,
                  const phi::DenseTensor& output_grad,
H
hong 已提交
83 84 85
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::vector<int>& dilations,
86
                  phi::DenseTensor* filter_grad,
H
hong 已提交
87 88 89
                  const DataLayout data_layout = DataLayout::kNCHW);
};

90
template <typename T>
W
wangguanzhong 已提交
91
static __forceinline__ __device__ T WarpReduceSum(T val, int warp_size) {
92 93
  typedef cub::WarpReduce<T> WarpReduce;
  typename WarpReduce::TempStorage temp_storage;
W
wangguanzhong 已提交
94 95 96
  val = WarpReduce(temp_storage).Sum(val, warp_size);
  return val;
}
97

W
wangguanzhong 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
template <typename T>
__forceinline__ __device__ T BlockReduceSum(T val) {
  static __shared__ T shared[32];
  int thread_id = threadIdx.x + threadIdx.y * blockDim.x +
                  threadIdx.z * blockDim.x * blockDim.y;
  int warp_size = min(blockDim.x * blockDim.y * blockDim.z, warpSize);
  int lane = thread_id % warp_size;
  int wid = thread_id / warp_size;

  val = WarpReduceSum(val, warp_size);  // Each warp performs partial reduction

  if (lane == 0) shared[wid] = val;  // Write reduced value to shared memory
  __syncthreads();                   // Wait for all partial reductions

  // read from shared memory only if that warp existed
  int block_size = blockDim.x * blockDim.y * blockDim.z;
  if (thread_id < (block_size - 1) / warp_size + 1) {
    val = shared[lane];
  } else {
    val = static_cast<T>(0);
  }
119

W
wangguanzhong 已提交
120 121 122 123 124 125 126 127
  if (wid == 0) {
    val = WarpReduceSum(val, warp_size);  // Final reduce within first warp
  }
  __syncthreads();
  if (thread_id != 0) {
    val = static_cast<T>(0);
  }
  return val;
128 129
}

130 131 132 133 134 135 136 137
#define ARG_DEFINE_KernelDepthwiseConv                                         \
  const T *const input_data, const T *const filter_data, const int batch_size, \
      const int output_channels, const int output_height,                      \
      const int output_width, const int input_channels,                        \
      const int input_height, const int input_width,                           \
      const int filter_multiplier, const int filter_height,                    \
      const int filter_width, const int stride_height, const int stride_width, \
      const int padding_height, const int padding_width,                       \
138
      const int dilate_height, const int dilate_width, T *const output_data
139

140 141
// A Cuda kernel to compute the depthwise convolution forward pass
// in NCHW format.
142
template <typename T, int c_filter, bool fuse_relu_before_conv>
143 144
__device__ __inline__ void KernelDepthwiseConvNCHW(
    ARG_DEFINE_KernelDepthwiseConv) {
145 146
  const int fw_size = c_filter != -1 ? c_filter : filter_width;
  const int fh_size = c_filter != -1 ? c_filter : filter_height;
147 148 149 150
  int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx >= (output_channels * batch_size * output_height * output_width))
    return;

151 152 153 154 155 156 157 158
  int tmp_1 = idx / output_width;
  const int w_out = idx - tmp_1 * output_width;
  int tmp_2 = tmp_1 / output_height;
  const int h_out = tmp_1 - tmp_2 * output_height;
  tmp_1 = tmp_2;
  tmp_2 = tmp_1 / output_channels;
  const int c_out = tmp_1 - tmp_2 * output_channels;
  const int batch = tmp_2;
159 160

  const int c_in = c_out / filter_multiplier;
161
  T value(0);
162 163 164

  int in_offset =
      ((batch * input_channels + c_in) * input_height) * input_width;
165 166 167
  int weight_offset = c_out * filter_height * filter_width;
  int h_in_start = -padding_height + h_out * stride_height;
  int w_in_start = -padding_width + w_out * stride_width;
168 169

#pragma unroll
170 171
  for (int fh = 0, h_in = h_in_start; fh < fh_size;
       fh++, h_in += dilate_height) {
172
#pragma unroll
173 174 175
    for (int fw = 0, w_in = w_in_start; fw < fw_size;
         fw++, w_in += dilate_width) {
      if (h_in >= 0 && h_in < input_height && w_in >= 0 && w_in < input_width) {
176 177 178
        int offset = in_offset + h_in * input_width + w_in;
        T in_data = input_data[offset];
        if (fuse_relu_before_conv) {
179 180
          value += filter_data[weight_offset] *
                   static_cast<T>(max(0.0f, static_cast<double>(in_data)));
181
        } else {
182
          value += filter_data[weight_offset] * in_data;
183
        }
184
      }
185 186 187
      weight_offset++;
    }
  }
188
  output_data[idx] = value;
189
}
190

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
// A Cuda kernel to compute the depthwise convolution forward pass
// in NHWC format.
template <typename T, bool fuse_relu_before_conv>
__device__ __inline__ void KernelDepthwiseConvNHWC(
    ARG_DEFINE_KernelDepthwiseConv) {
  int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx >= (output_channels * batch_size * output_height * output_width))
    return;

  const int c_out = idx % output_channels;
  const int w_out = (idx / output_channels) % output_width;
  const int h_out = (idx / output_channels / output_width) % output_height;
  const int batch = idx / output_width / output_height / output_channels;

  const int c_in = c_out / filter_multiplier;
206
  T value(0);
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
  const int h_in_start = -padding_height + h_out * stride_height;
  const int w_in_start = -padding_width + w_out * stride_width;
  const int h_in_end = h_in_start + filter_height * dilate_height;
  const int w_in_end = w_in_start + filter_width * dilate_width;

  const int h_end = h_in_end < input_height ? h_in_end : input_height;
  const int w_end = w_in_end < input_width ? w_in_end : input_width;
  const int h_start = h_in_start > 0 ? h_in_start : 0;
  const int w_start = w_in_start > 0 ? w_in_start : 0;
  int weight_offset = 0;

#pragma unroll
  for (int h_in = h_in_start; h_in < h_in_end; h_in += dilate_height) {
#pragma unroll
    for (int w_in = w_in_start; w_in < w_in_end; w_in += dilate_width) {
      if (h_in >= h_start && h_in < h_end && w_in >= w_start && w_in < w_end) {
        int offset = ((batch * input_height + h_in) * input_width + w_in) *
224
                         input_channels +
225 226
                     c_in;
        T in_data = input_data[offset];
227
        const T* weight = filter_data + weight_offset * output_channels + c_out;
228
        if (fuse_relu_before_conv) {
229 230
          value += weight[0] *
                   static_cast<T>(max(0.0f, static_cast<double>(in_data)));
231
        } else {
232
          value += weight[0] * in_data;
233
        }
Z
zlx 已提交
234
      }
235
      weight_offset++;
Z
zlx 已提交
236 237
    }
  }
238 239 240 241
  int index = batch * output_channels * output_height * output_width +
              h_out * output_width * output_channels + w_out * output_channels +
              c_out;
  output_data[index] = value;
Z
zlx 已提交
242
}
243

244
template <typename T, int c_filter, bool fuse_relu_before_conv>
245
__device__ __inline__ void KernelDepthwiseConvCFilterNCHW(
246
    ARG_DEFINE_KernelDepthwiseConv) {
247 248
  const int kWeightSize = c_filter * c_filter;
  T r_weight[kWeightSize];
249 250 251 252
  const int batch = blockIdx.y;
  const int c_out = blockIdx.x;
  const T* weight = filter_data + c_out * c_filter * c_filter;
  for (int i = 0; i < c_filter * c_filter; i++) r_weight[i] = weight[i];
253

254 255 256 257 258 259
  for (int w_out = threadIdx.x; w_out < output_width; w_out += blockDim.x) {
    for (int h_out = threadIdx.y; h_out < output_height; h_out += blockDim.y) {
      const int batch = blockIdx.y;
      const int c_out = blockIdx.x;

      const int c_in = c_out / filter_multiplier;
260
      T value(0);
261 262 263 264 265
      const int h_in_start = -padding_height + h_out * stride_height;
      const int w_in_start = -padding_width + w_out * stride_width;
      const int h_in_end = h_in_start + c_filter * dilate_height;
      const int w_in_end = w_in_start + c_filter * dilate_width;

266 267
      int in_offset =
          ((batch * input_channels + c_in) * input_height) * input_width;
268 269 270 271 272 273 274 275 276 277 278 279

      const int h_end = h_in_end < input_height ? h_in_end : input_height;
      const int w_end = w_in_end < input_width ? w_in_end : input_width;
      const int h_start = h_in_start > 0 ? h_in_start : 0;
      const int w_start = w_in_start > 0 ? w_in_start : 0;

      for (int h_in = h_in_start, h_f = 0; h_f < c_filter;
           h_in += dilate_height, h_f++) {
        for (int w_in = w_in_start, w_f = 0; w_f < c_filter;
             w_in += dilate_width, w_f++) {
          if (h_in >= 0 && h_in < input_height && w_in >= 0 &&
              w_in < input_width) {
280 281 282
            int offset = in_offset + h_in * input_width + w_in;
            if (fuse_relu_before_conv) {
              value += r_weight[h_f * c_filter + w_f] *
283 284
                       static_cast<T>(
                           max(0.0f, static_cast<double>(input_data[offset])));
285
            } else {
286
              value += r_weight[h_f * c_filter + w_f] * input_data[offset];
287
            }
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
          }
        }
      }
      int index =
          ((batch * gridDim.x + c_out) * output_height + h_out) * output_width +
          w_out;
      output_data[index] = value;
    }
  }
}

template <typename T, int c_filter, bool fuse_relu_before_conv>
__device__ __inline__ void KernelDepthwiseConvCFilterNHWC(
    ARG_DEFINE_KernelDepthwiseConv) {
  const int batch = blockIdx.z;
  int h_out = blockIdx.x * dilate_height + blockIdx.y;
  if (h_out >= output_height) {
    return;
  }
  int in_offset = batch * input_height * input_width * input_channels;
  int out_offset =
      (batch * output_height + h_out) * output_width * output_channels;
  const int h_in_start = -padding_height + h_out * stride_height;
  const int wi_size = (output_width + dilate_width - 1) / dilate_width;
  const int kWeightSize = c_filter * c_filter;
  T r_weight[kWeightSize];

  for (int c_out = threadIdx.x; c_out < output_channels; c_out += blockDim.x) {
    for (int i = 0; i < c_filter * c_filter; i++) {
      const T* weight = filter_data + i * output_channels + c_out;
      r_weight[i] = weight[0];
    }
    const int c_in = c_out / filter_multiplier;
    for (int i = threadIdx.y; i < wi_size * dilate_width; i += blockDim.y) {
      int i_dw = i / wi_size;
      int i_wi = i - i_dw * wi_size;
      int w_out = i_wi * dilate_width + i_dw;
      if (w_out >= output_width) {
        continue;
      }
328
      T value(0);
329 330 331 332 333 334 335 336 337
      const int w_in_start = -padding_width + w_out * stride_width;
      for (int h_in = h_in_start, h_f = 0; h_f < c_filter;
           h_in += dilate_height, h_f++) {
        for (int w_in = w_in_start, w_f = 0; w_f < c_filter;
             w_in += dilate_width, w_f++) {
          if (h_in >= 0 && h_in < input_height && w_in >= 0 &&
              w_in < input_width) {
            int offset =
                in_offset + (h_in * input_width + w_in) * input_channels + c_in;
338 339
            if (fuse_relu_before_conv) {
              value += r_weight[h_f * c_filter + w_f] *
340 341
                       static_cast<T>(
                           max(0.0, static_cast<double>(input_data[offset])));
342 343 344
            } else {
              value += r_weight[h_f * c_filter + w_f] * input_data[offset];
            }
345 346 347
          }
        }
      }
348
      int index = out_offset + w_out * output_channels + c_out;
349 350 351 352 353
      output_data[index] = value;
    }
  }
}

H
hong 已提交
354 355 356 357 358 359
template <typename T,
          int c_filter_multiplier,
          int c_stride,
          int c_filter,
          DataLayout data_layout,
          bool fuse_relu_before_conv>
360
__global__ void KernelDepthwiseConvSp(ARG_DEFINE_KernelDepthwiseConv) {
361 362 363 364 365 366 367 368 369
  int final_filter_multiplier = filter_multiplier;
  int h_stride = stride_height;
  int w_stride = stride_width;
  if (c_filter_multiplier != 0) {
    final_filter_multiplier = c_filter_multiplier;
    h_stride = c_stride;
    w_stride = c_stride;
  }
  if (c_filter == -1) {
370
    if (data_layout != DataLayout::kNHWC) {
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
      KernelDepthwiseConvNCHW<T, c_filter, fuse_relu_before_conv>(
          input_data,
          filter_data,
          batch_size,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
          output_data);
391
    } else {
H
hong 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
      KernelDepthwiseConvNHWC<T, fuse_relu_before_conv>(input_data,
                                                        filter_data,
                                                        batch_size,
                                                        output_channels,
                                                        output_height,
                                                        output_width,
                                                        input_channels,
                                                        input_height,
                                                        input_width,
                                                        final_filter_multiplier,
                                                        filter_height,
                                                        filter_width,
                                                        h_stride,
                                                        w_stride,
                                                        padding_height,
                                                        padding_width,
                                                        dilate_height,
                                                        dilate_width,
                                                        output_data);
411 412
    }
  } else {
413 414
    if (data_layout != DataLayout::kNHWC) {
      KernelDepthwiseConvCFilterNCHW<T, c_filter, fuse_relu_before_conv>(
H
hong 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
          input_data,
          filter_data,
          batch_size,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
433 434 435
          output_data);
    } else {
      KernelDepthwiseConvCFilterNHWC<T, c_filter, fuse_relu_before_conv>(
H
hong 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
          input_data,
          filter_data,
          batch_size,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
454 455
          output_data);
    }
456
  }
457 458
}

Z
zlx 已提交
459
// CUDA kernel to compute the depthwise convolution backprop w.r.t input.
460
#define ARG_DEFINE_KernelDepthwiseConvInputGrad                                \
461 462 463 464 465
  const T *const input_data, const T *const output_grad_data,                  \
      const T *const filter_data, const int batch_size,                        \
      const int output_channels, const int output_height,                      \
      const int output_width, const int input_channels,                        \
      const int input_height, const int input_width,                           \
466 467 468 469
      const int filter_multiplier, const int filter_height,                    \
      const int filter_width, const int stride_height, const int stride_width, \
      const int padding_height, const int padding_width,                       \
      const int dilate_height, const int dilate_width,                         \
470
      T *const input_grad_data
471

472
template <typename T, int c_filter, bool fuse_relu_before_conv>
473
__device__ __inline__ void KernelDepthwiseConvInputGradNCHW(
474
    ARG_DEFINE_KernelDepthwiseConvInputGrad) {
475 476 477 478 479 480 481 482 483 484 485 486
  const int fw_size = c_filter != -1 ? c_filter : filter_width;
  const int fh_size = c_filter != -1 ? c_filter : filter_height;
  int idx = blockIdx.x * blockDim.x + threadIdx.x;
  if (idx >= batch_size * input_channels * input_height * input_width) {
    return;
  }
  if (fuse_relu_before_conv) {
    if (input_data[idx] <= static_cast<T>(0.0f)) {
      input_grad_data[idx] = 0;
      return;
    }
  }
487

488 489 490 491 492 493 494 495
  int tmp_1 = idx / input_width;
  const int w_in = idx - tmp_1 * input_width;
  int tmp_2 = tmp_1 / input_height;
  const int h_in = tmp_1 - tmp_2 * input_height;
  tmp_1 = tmp_2;
  tmp_2 = tmp_1 / input_channels;
  const int c_in = tmp_1 - tmp_2 * input_channels;
  const int batch = tmp_2;
496

497 498 499 500
  T value(0);
  for (int c_mul = 0; c_mul < filter_multiplier; ++c_mul) {
    int c_out = c_in * filter_multiplier + c_mul;
    int filter_offset = c_out * filter_height * filter_width;
501

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
#pragma unroll
    for (int fh = 0; fh < fh_size; ++fh) {
#pragma unroll
      for (int fw = 0; fw < fw_size; ++fw) {
        int h_out = h_in + padding_height - fh * dilate_height;
        int w_out = w_in + padding_width - fw * dilate_width;
        if ((h_out - h_out / stride_height * stride_height == 0) &&
            (w_out - w_out / stride_width * stride_width == 0)) {
          h_out /= stride_height;
          w_out /= stride_width;

          if (h_out >= 0 && h_out < output_height && w_out >= 0 &&
              w_out < output_width) {
            int output_grad_offset =
                ((batch * output_channels + c_out) * output_height + h_out) *
                    output_width +
                w_out;
            value += output_grad_data[output_grad_offset] *
                     filter_data[filter_offset];
521 522
          }
        }
523
        filter_offset++;
524 525 526
      }
    }
  }
527
  input_grad_data[idx] = value;
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
}

template <typename T, bool fuse_relu_before_conv>
__device__ __inline__ void KernelDepthwiseConvInputGradNHWC(
    ARG_DEFINE_KernelDepthwiseConvInputGrad) {
  const int batch = blockIdx.z;
  int h_in = blockIdx.x * dilate_height + blockIdx.y;
  if (h_in >= input_height) {
    return;
  }

  for (int c_in = threadIdx.x; c_in < input_channels; c_in += blockDim.x) {
    for (int w_in = threadIdx.y; w_in < input_width; w_in += blockDim.y) {
      int h_out_start =
          h_in - (filter_height - 1) * dilate_height + padding_height;
      int w_out_start =
          w_in - (filter_width - 1) * dilate_width + padding_width;

546
      T value(0);
547 548 549 550
      int index = ((batch * input_height + h_in) * input_width + w_in) *
                      input_channels +
                  c_in;
      if (fuse_relu_before_conv) {
551
        if (input_data[index] <= T(0)) {
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
          input_grad_data[index] = 0;
          continue;
        }
      }

      for (int c_i = 0; c_i < filter_multiplier; c_i++) {
        int c_out = c_in * filter_multiplier + c_i;
        int weight_offset = filter_height * filter_width;
        for (int h_out = h_out_start, h_f = 0; h_f < filter_height;
             h_out += dilate_height, h_f++) {
          for (int w_out = w_out_start, w_f = 0; w_f < filter_width;
               w_out += dilate_width, w_f++) {
            weight_offset--;
            int s_h_out = h_out / stride_height;
            int s_w_out = w_out / stride_width;
            if (h_out % stride_height == 0 && w_out % stride_width == 0 &&
                s_h_out >= 0 && s_h_out < output_height && s_w_out >= 0 &&
                s_w_out < output_width) {
              int output_grad_offset =
                  ((batch * output_height + s_h_out) * output_width + s_w_out) *
                      output_channels +
                  c_out;
              int filter_offset = weight_offset * output_channels + c_out;
575 576 577 578
              value += output_grad_data[output_grad_offset] *
                       filter_data[filter_offset];
            }
          }
Z
zlx 已提交
579 580
        }
      }
581
      input_grad_data[index] = value;
Z
zlx 已提交
582 583 584 585
    }
  }
}

H
hong 已提交
586 587 588
template <typename T,
          int c_filter,
          int c_filter_multiplier,
589
          bool fuse_relu_before_conv>
590
__device__ __inline__ void KernelDepthwiseConvInputGradCFilterNCHW(
591
    ARG_DEFINE_KernelDepthwiseConvInputGrad) {
592 593
  const int kWeightSize = c_filter * c_filter * c_filter_multiplier + 1;
  T r_weight[kWeightSize];
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
  const int batch = blockIdx.y;
  const int c_in = blockIdx.x;

  for (int c_i = 0; c_i < filter_multiplier; c_i++) {
    int c_out = c_in * filter_multiplier + c_i;
    const T* weight = filter_data + c_out * c_filter * c_filter;
    for (int i = 0; i < c_filter * c_filter; i++)
      r_weight[i + c_i * c_filter * c_filter] =
          weight[c_filter * c_filter - i - 1];
  }

  for (int w_in = threadIdx.x; w_in < input_width; w_in += blockDim.x) {
    for (int h_in = threadIdx.y; h_in < input_height; h_in += blockDim.y) {
      int h_out_start = h_in - (c_filter - 1) * dilate_height + padding_height;
      int w_out_start = w_in - (c_filter - 1) * dilate_width + padding_width;

610
      T value(0);
611 612 613
      int index =
          ((batch * gridDim.x + c_in) * input_height + h_in) * input_width +
          w_in;
614
      if (fuse_relu_before_conv) {
615
        if (input_data[index] <= T(0)) {
616 617 618 619
          input_grad_data[index] = 0;
          continue;
        }
      }
620 621 622 623 624 625 626 627 628 629 630 631

      for (int c_i = 0; c_i < filter_multiplier; c_i++) {
        int c_out = c_in * filter_multiplier + c_i;
        for (int h_out = h_out_start, h_f = 0; h_f < c_filter;
             h_out += dilate_height, h_f++) {
          for (int w_out = w_out_start, w_f = 0; w_f < c_filter;
               w_out += dilate_width, w_f++) {
            int s_h_out = h_out / stride_height;
            int s_w_out = w_out / stride_width;
            if (h_out % stride_height == 0 && w_out % stride_width == 0 &&
                s_h_out >= 0 && s_h_out < output_height && s_w_out >= 0 &&
                s_w_out < output_width) {
632 633 634 635 636
              int output_grad_offset =
                  ((batch * output_channels + c_out) * output_height +
                   s_h_out) *
                      output_width +
                  s_w_out;
637 638 639 640 641 642 643 644 645 646 647 648
              value +=
                  output_grad_data[output_grad_offset] *
                  r_weight[h_f * c_filter + w_f + c_i * c_filter * c_filter];
            }
          }
        }
      }
      input_grad_data[index] = value;
    }
  }
}

H
hong 已提交
649 650 651
template <typename T,
          int c_filter,
          int c_filter_multiplier,
652
          bool fuse_relu_before_conv>
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
__device__ __inline__ void KernelDepthwiseConvInputGradCFilterNHWC(
    ARG_DEFINE_KernelDepthwiseConvInputGrad) {
  int h_in = blockIdx.x * dilate_height + blockIdx.y;
  if (h_in >= input_height) {
    return;
  }
  const int kWeightSize = c_filter * c_filter * c_filter_multiplier + 1;
  T r_weight[kWeightSize];
  const int batch = blockIdx.z;
  const int wi_size = (input_width + dilate_width - 1) / dilate_width;
  const int h_out_start =
      h_in - (c_filter - 1) * dilate_height + padding_height;

  for (int c_in = threadIdx.x; c_in < input_channels; c_in += blockDim.x) {
    for (int c_i = 0; c_i < c_filter_multiplier; c_i++) {
      int c_out = c_in * c_filter_multiplier + c_i;
      for (int i = 0; i < c_filter * c_filter; i++)
        r_weight[i + c_i * c_filter * c_filter] =
            filter_data[(c_filter * c_filter - i - 1) * output_channels +
                        c_out];
    }
    for (int i = threadIdx.y; i < wi_size * dilate_width; i += blockDim.y) {
      int i_dw = i / wi_size;
      int i_wi = i - i_dw * wi_size;
      int w_in = i_wi * dilate_width + i_dw;
      if (w_in >= input_width) {
        continue;
      }
      int w_out_start = w_in - (c_filter - 1) * dilate_width + padding_width;

683
      T value(0);
684 685 686 687
      int index = ((batch * input_height + h_in) * input_width + w_in) *
                      input_channels +
                  c_in;
      if (fuse_relu_before_conv) {
688
        if (input_data[index] <= T(0)) {
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
          input_grad_data[index] = 0;
          continue;
        }
      }

      for (int c_i = 0; c_i < c_filter_multiplier; c_i++) {
        int c_out = c_in * c_filter_multiplier + c_i;
        for (int h_out = h_out_start, h_f = 0; h_f < c_filter;
             h_out += dilate_height, h_f++) {
          for (int w_out = w_out_start, w_f = 0; w_f < c_filter;
               w_out += dilate_width, w_f++) {
            int s_h_out = h_out / stride_height;
            int s_w_out = w_out / stride_width;
            if (h_out % stride_height == 0 && w_out % stride_width == 0 &&
                s_h_out >= 0 && s_h_out < output_height && s_w_out >= 0 &&
                s_w_out < output_width) {
              int output_grad_offset =
                  ((batch * output_height + s_h_out) * output_width + s_w_out) *
                      output_channels +
                  c_out;
              value +=
                  output_grad_data[output_grad_offset] *
                  r_weight[h_f * c_filter + w_f + c_i * c_filter * c_filter];
            }
          }
        }
      }
      input_grad_data[index] = value;
    }
  }
}

H
hong 已提交
721 722 723 724 725 726
template <typename T,
          int c_filter_multiplier,
          int c_stride,
          int c_filter,
          DataLayout data_layout,
          bool fuse_relu_before_conv>
727
__global__ void KernelDepthwiseConvInputGradSp(
728
    ARG_DEFINE_KernelDepthwiseConvInputGrad) {
729 730 731 732 733 734 735 736 737 738 739
  int final_filter_multiplier = filter_multiplier;
  int h_stride = stride_height;
  int w_stride = stride_width;
  if (c_filter_multiplier != 0) {
    final_filter_multiplier = c_filter_multiplier;
    h_stride = c_stride;
    w_stride = c_stride;
  }

  if (c_filter_multiplier == 0 || c_filter == -1) {
    if (data_layout != DataLayout::kNHWC) {
740
      KernelDepthwiseConvInputGradNCHW<T, c_filter, fuse_relu_before_conv>(
H
hong 已提交
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
          input_data,
          output_grad_data,
          filter_data,
          batch_size,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
          input_grad_data);
761 762
    } else {
      KernelDepthwiseConvInputGradNHWC<T, fuse_relu_before_conv>(
H
hong 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
          input_data,
          output_grad_data,
          filter_data,
          batch_size,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
          input_grad_data);
783 784 785
    }
  } else {
    if (data_layout != DataLayout::kNHWC) {
H
hong 已提交
786 787 788
      KernelDepthwiseConvInputGradCFilterNCHW<T,
                                              c_filter,
                                              c_filter_multiplier,
789
                                              fuse_relu_before_conv>(
H
hong 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
          input_data,
          output_grad_data,
          filter_data,
          batch_size,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          c_filter_multiplier,
          filter_height,
          filter_width,
          c_stride,
          c_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
          input_grad_data);
810
    } else {
H
hong 已提交
811 812 813
      KernelDepthwiseConvInputGradCFilterNHWC<T,
                                              c_filter,
                                              c_filter_multiplier,
814
                                              fuse_relu_before_conv>(
H
hong 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
          input_data,
          output_grad_data,
          filter_data,
          batch_size,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          c_filter_multiplier,
          filter_height,
          filter_width,
          c_stride,
          c_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
          input_grad_data);
835 836
    }
  }
837 838
}

839
// Cuda kernel to compute the depthwise convolution backprop w.r.t. filter.
840
template <typename T, bool fuse_relu_before_conv>
841
__device__ __inline__ void KernelDepthwiseConvFilterGradNCHW(
H
hong 已提交
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
    const T* output_grad_data,
    const T* input_data,
    const int num,
    const int output_channels,
    const int output_height,
    const int output_width,
    const int input_channels,
    const int input_height,
    const int input_width,
    const int filter_multiplier,
    const int filter_height,
    const int filter_width,
    const int stride_height,
    const int stride_width,
    const int padding_height,
    const int padding_width,
    const int dilate_height,
    const int dilate_width,
    T* filter_grad_data) {
861
  T s(0);
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
  int gbid = ((blockIdx.z * gridDim.y) + blockIdx.y) * gridDim.x + blockIdx.x;

  for (int image_w = threadIdx.x; image_w < output_width;
       image_w += blockDim.x) {
    for (int bid = 0; bid < num; bid++) {
      for (int image_h = threadIdx.y; image_h < output_height;
           image_h += blockDim.y) {
        int kernel_id = blockIdx.z;
        int kernel_h = blockIdx.y * dilate_height - padding_height;
        int kernel_w = blockIdx.x * dilate_width - padding_width;

        int image_hk = image_h * stride_height + kernel_h;
        int image_wk = image_w * stride_width + kernel_w;
        if (image_hk < 0 || image_hk >= input_height) continue;
        if (image_wk < 0 || image_wk >= input_width) continue;
#define gaid(N, C, H, W) \
  ((((N)*gridDim.z + (C)) * output_height + (H)) * output_width + (W))
879 880 881 882 883 884 885 886
        int input_id = ((bid * (gridDim.z / filter_multiplier) +
                         kernel_id / filter_multiplier) *
                            input_height +
                        image_hk) *
                           input_width +
                       image_wk;
        if (fuse_relu_before_conv) {
          s += output_grad_data[gaid(bid, kernel_id, image_h, image_w)] *
887 888
               static_cast<T>(
                   max(0.0f, static_cast<double>(input_data[input_id])));
889
        } else {
890 891 892 893 894 895 896
          s += output_grad_data[gaid(bid, kernel_id, image_h, image_w)] *
               input_data[input_id];
        }
#undef gaid
      }
    }
  }
W
wangguanzhong 已提交
897 898

  T val = BlockReduceSum(s);
899
  if (threadIdx.y == 0 && threadIdx.x == 0) filter_grad_data[gbid] = val;
900 901 902 903
}

template <typename T, bool fuse_relu_before_conv>
__device__ __inline__ void KernelDepthwiseConvFilterGradNHWC(
H
hong 已提交
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
    const T* output_grad_data,
    const T* input_data,
    const int num,
    const int output_channels,
    const int output_height,
    const int output_width,
    const int input_channels,
    const int input_height,
    const int input_width,
    const int filter_multiplier,
    const int filter_height,
    const int filter_width,
    const int stride_height,
    const int stride_width,
    const int padding_height,
    const int padding_width,
    const int dilate_height,
    const int dilate_width,
    T* filter_grad_data) {
923 924 925 926 927 928
  int bid = blockIdx.z;
  int image_h = blockIdx.y;
  int kernel_iw = blockIdx.x % filter_width;
  int kernel_ih = blockIdx.x / filter_width;
  for (int kernel_id = threadIdx.x; kernel_id < output_channels;
       kernel_id += blockDim.x) {
929
    T s(0);
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
    int gbid =
        ((kernel_id * filter_height) + kernel_ih) * filter_width + kernel_iw;
    for (int image_w = threadIdx.y; image_w < output_width;
         image_w += blockDim.y) {
      int kernel_h = kernel_ih * dilate_height - padding_height;
      int kernel_w = kernel_iw * dilate_width - padding_width;

      int image_hk = image_h * stride_height + kernel_h;
      int image_wk = image_w * stride_width + kernel_w;
      if (image_hk < 0 || image_hk >= input_height) continue;
      if (image_wk < 0 || image_wk >= input_width) continue;
#define gaid(N, H, W, C) \
  ((((N)*output_height + (H)) * output_width + (W)) * output_channels + (C))
      int input_id =
          ((bid * input_height + image_hk) * input_width + image_wk) *
              input_channels +
          kernel_id / filter_multiplier;
      if (fuse_relu_before_conv) {
        s += output_grad_data[gaid(bid, image_h, image_w, kernel_id)] *
949 950
             static_cast<T>(
                 max(0.0f, static_cast<double>(input_data[input_id])));
951 952 953 954 955 956 957 958 959 960 961 962
      } else {
        s += output_grad_data[gaid(bid, image_h, image_w, kernel_id)] *
             input_data[input_id];
      }
#undef gaid
    }
    platform::CudaAtomicAdd(&filter_grad_data[gbid], s);
  }
}

template <typename T, int c_filter, bool fuse_relu_before_conv>
__device__ __inline__ void KernelDepthwiseConvFilterGradCFilterNHWC(
H
hong 已提交
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
    const T* output_grad_data,
    const T* input_data,
    const int num,
    const int output_channels,
    const int output_height,
    const int output_width,
    const int input_channels,
    const int input_height,
    const int input_width,
    const int filter_multiplier,
    const int filter_height,
    const int filter_width,
    const int stride_height,
    const int stride_width,
    const int padding_height,
    const int padding_width,
    const int dilate_height,
    const int dilate_width,
    T* filter_grad_data) {
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
  const int bid = blockIdx.z;
  int image_h = blockIdx.x * dilate_height + blockIdx.y;
  if (image_h >= output_height) {
    return;
  }
  const int kWeightSize = c_filter * c_filter;
  T r_weight[kWeightSize];
  const int wi_size = (output_width + dilate_width - 1) / dilate_width;

  for (int kernel_id = threadIdx.x; kernel_id < output_channels;
       kernel_id += blockDim.x) {
    for (int i = 0; i < c_filter * c_filter; ++i) {
      r_weight[i] = 0;
    }
    for (int i = threadIdx.y; i < wi_size * dilate_width; i += blockDim.y) {
      int i_dw = i / wi_size;
      int i_wi = i - i_dw * wi_size;
      int image_w = i_wi * dilate_width + i_dw;
      if (image_w >= output_width) {
        continue;
      }
      for (int kernel_ih = 0; kernel_ih < c_filter; ++kernel_ih) {
        for (int kernel_iw = 0; kernel_iw < c_filter; ++kernel_iw) {
          int kernel_h = kernel_ih * dilate_height - padding_height;
          int kernel_w = kernel_iw * dilate_width - padding_width;
          int image_hk = image_h * stride_height + kernel_h;
          int image_wk = image_w * stride_width + kernel_w;
          if (image_hk < 0 || image_hk >= input_height) continue;
          if (image_wk < 0 || image_wk >= input_width) continue;
          int input_id =
1012
              ((bid * input_height + image_hk) * input_width + image_wk) *
1013
                  input_channels +
1014
              kernel_id / filter_multiplier;
1015 1016 1017 1018
          int output_id =
              ((bid * output_height + image_h) * output_width + image_w) *
                  output_channels +
              kernel_id;
1019
          T s(0);
1020
          if (fuse_relu_before_conv) {
1021
            s = output_grad_data[output_id] *
1022 1023
                static_cast<T>(
                    max(0.0f, static_cast<double>(input_data[input_id])));
1024
          } else {
1025
            s = output_grad_data[output_id] * input_data[input_id];
1026
          }
1027
          r_weight[kernel_ih * c_filter + kernel_iw] += s;
1028
        }
1029
      }
Z
zlx 已提交
1030
    }
1031 1032 1033 1034
    for (int i = 0; i < c_filter * c_filter; ++i) {
      T* weight = filter_grad_data + i * output_channels + kernel_id;
      platform::CudaAtomicAdd(&weight[0], r_weight[i]);
    }
Z
zlx 已提交
1035
  }
1036 1037
}

H
hong 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
template <typename T,
          int c_filter_multiplier,
          int c_stride,
          int c_filter,
          DataLayout data_layout,
          bool fuse_relu_before_conv>
__global__ void KernelDepthwiseConvFilterGradSp(const T* output_grad_data,
                                                const T* input_data,
                                                const int num,
                                                const int output_channels,
                                                const int output_height,
                                                const int output_width,
                                                const int input_channels,
                                                const int input_height,
                                                const int input_width,
                                                const int filter_multiplier,
                                                const int filter_height,
                                                const int filter_width,
                                                const int stride_height,
                                                const int stride_width,
                                                const int padding_height,
                                                const int padding_width,
                                                const int dilate_height,
                                                const int dilate_width,
                                                T* filter_grad_data) {
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
  int final_filter_multiplier = filter_multiplier;
  int h_stride = stride_height;
  int w_stride = stride_width;
  if (c_filter_multiplier != 0) {
    final_filter_multiplier = c_filter_multiplier;
    h_stride = c_stride;
    w_stride = c_stride;
  }
  if (c_filter_multiplier == 0 || c_filter == -1) {
    if (data_layout != DataLayout::kNHWC) {
      KernelDepthwiseConvFilterGradNCHW<T, fuse_relu_before_conv>(
H
hong 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
          output_grad_data,
          input_data,
          num,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
1092 1093 1094
          filter_grad_data);
    } else {
      KernelDepthwiseConvFilterGradNHWC<T, fuse_relu_before_conv>(
H
hong 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
          output_grad_data,
          input_data,
          num,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
1113 1114 1115 1116 1117
          filter_grad_data);
    }
  } else {
    if (data_layout != DataLayout::kNHWC) {
      KernelDepthwiseConvFilterGradNCHW<T, fuse_relu_before_conv>(
H
hong 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
          output_grad_data,
          input_data,
          num,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
1136 1137
          filter_grad_data);
    } else {
H
hong 已提交
1138 1139
      KernelDepthwiseConvFilterGradCFilterNHWC<T,
                                               c_filter,
1140
                                               fuse_relu_before_conv>(
H
hong 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
          output_grad_data,
          input_data,
          num,
          output_channels,
          output_height,
          output_width,
          input_channels,
          input_height,
          input_width,
          final_filter_multiplier,
          filter_height,
          filter_width,
          h_stride,
          w_stride,
          padding_height,
          padding_width,
          dilate_height,
          dilate_width,
1159 1160 1161
          filter_grad_data);
    }
  }
Z
zlx 已提交
1162 1163 1164 1165 1166 1167 1168
}

/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
1169
template <class T, bool fuse_relu_before_conv>
H
hong 已提交
1170
class DepthwiseConvFunctor<phi::GPUContext, T, fuse_relu_before_conv> {
Z
zlx 已提交
1171
 public:
H
hong 已提交
1172
  void operator()(const phi::GPUContext& context,
1173 1174
                  const phi::DenseTensor& input,
                  const phi::DenseTensor& filter,
X
xzl 已提交
1175
                  const std::vector<int>& strides,
1176
                  const std::vector<int>& paddings,
H
hong 已提交
1177
                  const std::vector<int>& dilations,
1178
                  phi::DenseTensor* output,
1179
                  const DataLayout data_layout = DataLayout::kNCHW) {
Z
zlx 已提交
1180
    const int batch_size = input.dims()[0];
1181
    const int input_channels =
1182
        (data_layout != DataLayout::kNHWC ? input.dims()[1] : input.dims()[3]);
1183
    const int input_height =
1184
        (data_layout != DataLayout::kNHWC ? input.dims()[2] : input.dims()[1]);
1185
    const int input_width =
1186
        (data_layout != DataLayout::kNHWC ? input.dims()[3] : input.dims()[2]);
1187
    const int output_channels =
1188
        (data_layout != DataLayout::kNHWC ? output->dims()[1]
1189 1190
                                          : output->dims()[3]);
    const int output_height =
1191
        (data_layout != DataLayout::kNHWC ? output->dims()[2]
1192 1193
                                          : output->dims()[1]);
    const int output_width =
1194
        (data_layout != DataLayout::kNHWC ? output->dims()[3]
1195
                                          : output->dims()[2]);
1196 1197
    const int ksize_height = filter.dims()[2];
    const int ksize_width = filter.dims()[3];
Z
zlx 已提交
1198 1199 1200 1201
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
1202 1203
    const int dilate_height = dilations[0];
    const int dilate_width = dilations[1];
Z
zlx 已提交
1204 1205 1206 1207 1208

    const T* input_data = input.data<T>();
    const T* filter_data = filter.data<T>();
    T* output_data = output->mutable_data<T>(context.GetPlace());

1209
    phi::DenseTensor filter_hwc;
1210
    if (data_layout == DataLayout::kNHWC) {
H
hong 已提交
1211 1212 1213 1214
      framework::DDim filter_hwc_dims({filter.dims()[2],
                                       filter.dims()[3],
                                       filter.dims()[0],
                                       filter.dims()[1]});
1215 1216 1217
      filter_hwc.Resize(filter_hwc_dims);
      filter_hwc.mutable_data<T>(context.GetPlace());
      std::vector<int> perm_axis({2, 3, 0, 1});
H
hong 已提交
1218
      phi::funcs::TransposeNormal<phi::GPUContext, T> trans;
1219 1220 1221 1222
      trans(context, filter, &filter_hwc, perm_axis);
      filter_data = filter_hwc.data<T>();
    }

1223
    int thread = 512;
1224 1225 1226
    int blocks;
    dim3 threads;
    dim3 grid;
W
wangguanzhong 已提交
1227

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
    if (data_layout != DataLayout::kNHWC) {
      if (output_width > 1024 && output_width <= 2048)
        thread = (output_width - 1) / 2 + 1;
      else if (output_width > 512 && output_width <= 1024)
        thread = output_width;
#ifdef __HIPCC__
      thread = std::min(thread, 256);
#endif
      blocks = std::min(std::max(thread / output_width, 1), output_height);
      threads = dim3(std::min(output_width, thread), blocks, 1);
      grid = dim3(output_channels, batch_size, 1);
    } else {
1240
#ifdef __HIPCC__
1241
      thread = std::min(thread, 256);
1242
#endif
1243 1244 1245 1246 1247
      blocks = std::min(
          std::max(thread / output_channels, 1),
          ((output_width + dilate_width - 1) / dilate_width) * dilate_width);
      threads = dim3(std::min(output_channels, thread), blocks, 1);
      grid = dim3((output_height + dilate_height - 1) / dilate_height,
H
hong 已提交
1248 1249
                  dilate_height,
                  batch_size);
1250
    }
1251
    int filter_multiplier = output_channels / input_channels;
1252
    int nums_output = output->numel();
1253 1254 1255
#ifdef __HIPCC__
    int block_size = 256;
#else
1256
    int block_size = 512;
1257
#endif
1258
    int grid_size = (nums_output + block_size - 1) / block_size;
1259

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
#define check_case(c_filter_multiplier, c_stride, c_filter)             \
  if (c_filter_multiplier == 0 ||                                       \
      filter_multiplier == c_filter_multiplier &&                       \
          stride_height == stride_width && stride_height == c_stride && \
          (ksize_height == ksize_width && ksize_height == c_filter ||   \
           c_filter == -1)) {                                           \
    if (c_filter == -1) {                                               \
      threads.x = block_size;                                           \
      grid.x = grid_size;                                               \
      threads.y = threads.z = grid.y = grid.z = 1;                      \
    }                                                                   \
    if (data_layout != DataLayout::kNHWC) {                             \
      KernelDepthwiseConvSp<T,                                          \
                            c_filter_multiplier,                        \
                            c_stride,                                   \
                            c_filter,                                   \
                            DataLayout::kNCHW,                          \
                            fuse_relu_before_conv>                      \
          <<<grid, threads, 0, context.stream()>>>(input_data,          \
                                                   filter_data,         \
                                                   batch_size,          \
                                                   output_channels,     \
                                                   output_height,       \
                                                   output_width,        \
                                                   input_channels,      \
                                                   input_height,        \
                                                   input_width,         \
                                                   filter_multiplier,   \
                                                   ksize_height,        \
                                                   ksize_width,         \
                                                   stride_height,       \
                                                   stride_width,        \
                                                   padding_height,      \
                                                   padding_width,       \
                                                   dilate_height,       \
                                                   dilate_width,        \
                                                   output_data);        \
    } else {                                                            \
      KernelDepthwiseConvSp<T,                                          \
                            c_filter_multiplier,                        \
                            c_stride,                                   \
                            c_filter,                                   \
                            DataLayout::kNHWC,                          \
                            fuse_relu_before_conv>                      \
          <<<grid, threads, 0, context.stream()>>>(input_data,          \
                                                   filter_data,         \
                                                   batch_size,          \
                                                   output_channels,     \
                                                   output_height,       \
                                                   output_width,        \
                                                   input_channels,      \
                                                   input_height,        \
                                                   input_width,         \
                                                   filter_multiplier,   \
                                                   ksize_height,        \
                                                   ksize_width,         \
                                                   stride_height,       \
                                                   stride_width,        \
                                                   padding_height,      \
                                                   padding_width,       \
                                                   dilate_height,       \
                                                   dilate_width,        \
                                                   output_data);        \
    }                                                                   \
    return;                                                             \
1325
  }
1326 1327 1328 1329 1330 1331
    check_case(1, 1, 3);
    check_case(1, 1, 5);
    check_case(1, 1, -1);
    check_case(1, 2, 3);
    check_case(1, 2, 5);
    check_case(1, 2, -1);
1332 1333 1334 1335 1336 1337
    check_case(2, 1, 3);
    check_case(2, 1, 5);
    check_case(2, 1, -1);
    check_case(2, 2, 3);
    check_case(2, 2, 5);
    check_case(2, 2, -1);
1338 1339 1340
    check_case(0, 0, -1);
// NOTE(liangdun): 0,0 for other case
// add other case if needed, e.g. check_case(2^n,1)
1341
#undef check_case
Z
zlx 已提交
1342 1343 1344
  }
};

1345
template <typename T, bool fuse_relu_before_conv>
H
hong 已提交
1346
class DepthwiseConvInputGradFunctor<phi::GPUContext, T, fuse_relu_before_conv> {
Z
zlx 已提交
1347
 public:
H
hong 已提交
1348
  void operator()(const phi::GPUContext& context,
1349 1350 1351
                  const phi::DenseTensor& input,
                  const phi::DenseTensor& filter,
                  const phi::DenseTensor& output_grad,
X
xzl 已提交
1352 1353
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
1354
                  const std::vector<int>& dilations,
1355
                  phi::DenseTensor* input_grad,
1356
                  const DataLayout data_layout = DataLayout::kNCHW) {
Z
zlx 已提交
1357
    const int batch_size = input.dims()[0];
1358
    const int input_channels =
1359
        (data_layout != DataLayout::kNHWC ? input.dims()[1] : input.dims()[3]);
1360
    const int input_height =
1361
        (data_layout != DataLayout::kNHWC ? input.dims()[2] : input.dims()[1]);
1362
    const int input_width =
1363
        (data_layout != DataLayout::kNHWC ? input.dims()[3] : input.dims()[2]);
1364
    const int output_channels =
1365
        (data_layout != DataLayout::kNHWC ? output_grad.dims()[1]
1366 1367
                                          : output_grad.dims()[3]);
    const int output_height =
1368
        (data_layout != DataLayout::kNHWC ? output_grad.dims()[2]
1369 1370
                                          : output_grad.dims()[1]);
    const int output_width =
1371
        (data_layout != DataLayout::kNHWC ? output_grad.dims()[3]
1372
                                          : output_grad.dims()[2]);
1373 1374 1375
    const int ksize_height = filter.dims()[2];
    const int ksize_width = filter.dims()[3];
    const int stride_height = strides[0];
Z
zlx 已提交
1376 1377 1378
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
1379 1380
    const int dilate_height = dilations[0];
    const int dilate_width = dilations[1];
Z
zlx 已提交
1381

1382
    const T* input_data = input.data<T>();
1383
    const T* filter_data = filter.data<T>();
Z
zlx 已提交
1384 1385 1386
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());

1387
    phi::DenseTensor filter_hwc;
1388
    if (data_layout == DataLayout::kNHWC) {
H
hong 已提交
1389 1390 1391 1392
      framework::DDim filter_hwc_dims({filter.dims()[2],
                                       filter.dims()[3],
                                       filter.dims()[0],
                                       filter.dims()[1]});
1393 1394 1395
      filter_hwc.Resize(filter_hwc_dims);
      filter_hwc.mutable_data<T>(context.GetPlace());
      std::vector<int> perm_axis({2, 3, 0, 1});
H
hong 已提交
1396
      phi::funcs::TransposeNormal<phi::GPUContext, T> trans;
1397 1398 1399 1400
      trans(context, filter, &filter_hwc, perm_axis);
      filter_data = filter_hwc.data<T>();
    }

1401
    int thread = 512;
1402 1403 1404
    int blocks;
    dim3 threads;
    dim3 grid;
W
wangguanzhong 已提交
1405

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
    if (data_layout != DataLayout::kNHWC) {
      if (input_width > 1024 && input_width <= 2048) {
        thread = (input_width - 1) / 2 + 1;
      } else if (input_width > 512 && input_width <= 1024) {
        thread = input_width;
      }
      blocks = std::min(std::max(thread / input_width, 1), input_height);
      threads = dim3(std::min(input_width, thread), blocks, 1);
      grid = dim3(input_channels, batch_size, 1);
    } else {
      blocks = std::min(
          std::max(thread / input_channels, 1),
          ((input_width + dilate_width - 1) / dilate_width) * dilate_width);
      threads = dim3(std::min(input_channels, thread), blocks, 1);
      grid = dim3((input_height + dilate_height - 1) / dilate_height,
H
hong 已提交
1421 1422
                  dilate_height,
                  batch_size);
1423
    }
1424
    int filter_multiplier = output_channels / input_channels;
1425 1426 1427 1428 1429 1430 1431
    int nums_input = input_grad->numel();
#ifdef __HIPCC__
    int block_size = 256;
#else
    int block_size = 512;
#endif
    int grid_size = (nums_input + block_size - 1) / block_size;
1432

1433 1434 1435 1436 1437 1438 1439
#define check_case(c_filter_multiplier, c_stride, c_filter)             \
  if (c_filter_multiplier == 0 ||                                       \
      filter_multiplier == c_filter_multiplier &&                       \
          stride_height == stride_width && stride_height == c_stride && \
          (ksize_height == ksize_width && ksize_height == c_filter ||   \
           c_filter == -1)) {                                           \
    if (data_layout != DataLayout::kNHWC) {                             \
1440 1441 1442 1443 1444
      if (c_filter == -1) {                                             \
        threads.x = block_size;                                         \
        grid.x = grid_size;                                             \
        threads.y = threads.z = grid.y = grid.z = 1;                    \
      }                                                                 \
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
      KernelDepthwiseConvInputGradSp<T,                                 \
                                     c_filter_multiplier,               \
                                     c_stride,                          \
                                     c_filter,                          \
                                     DataLayout::kNCHW,                 \
                                     fuse_relu_before_conv>             \
          <<<grid, threads, 0, context.stream()>>>(input_data,          \
                                                   output_grad_data,    \
                                                   filter_data,         \
                                                   batch_size,          \
                                                   output_channels,     \
                                                   output_height,       \
                                                   output_width,        \
                                                   input_channels,      \
                                                   input_height,        \
                                                   input_width,         \
                                                   filter_multiplier,   \
                                                   ksize_height,        \
                                                   ksize_width,         \
                                                   stride_height,       \
                                                   stride_width,        \
                                                   padding_height,      \
                                                   padding_width,       \
                                                   dilate_height,       \
                                                   dilate_width,        \
                                                   input_grad_data);    \
    } else {                                                            \
      KernelDepthwiseConvInputGradSp<T,                                 \
                                     c_filter_multiplier,               \
                                     c_stride,                          \
                                     c_filter,                          \
                                     DataLayout::kNHWC,                 \
                                     fuse_relu_before_conv>             \
          <<<grid, threads, 0, context.stream()>>>(input_data,          \
                                                   output_grad_data,    \
                                                   filter_data,         \
                                                   batch_size,          \
                                                   output_channels,     \
                                                   output_height,       \
                                                   output_width,        \
                                                   input_channels,      \
                                                   input_height,        \
                                                   input_width,         \
                                                   filter_multiplier,   \
                                                   ksize_height,        \
                                                   ksize_width,         \
                                                   stride_height,       \
                                                   stride_width,        \
                                                   padding_height,      \
                                                   padding_width,       \
                                                   dilate_height,       \
                                                   dilate_width,        \
                                                   input_grad_data);    \
    }                                                                   \
    return;                                                             \
1500
  }
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
    check_case(1, 1, 3);
    check_case(1, 1, 5);
    check_case(1, 1, -1);
    check_case(1, 2, 3);
    check_case(1, 2, 5);
    check_case(1, 2, -1);
    check_case(2, 1, 3);
    check_case(2, 1, 5);
    check_case(2, 1, -1);
    check_case(2, 2, 3);
    check_case(2, 2, 5);
    check_case(2, 2, -1);
    check_case(0, 0, -1);
// NOTE(liangdun): 0,0 for other case
// add other case if needed, e.g. check_case(2^n,1)
1516
#undef check_case
Z
zlx 已提交
1517 1518 1519
  }
};

1520
template <typename T, bool fuse_relu_before_conv>
H
hong 已提交
1521 1522
class DepthwiseConvFilterGradFunctor<phi::GPUContext,
                                     T,
1523
                                     fuse_relu_before_conv> {
Z
zlx 已提交
1524
 public:
H
hong 已提交
1525
  void operator()(const phi::GPUContext& context,
1526 1527
                  const phi::DenseTensor& input,
                  const phi::DenseTensor& output_grad,
X
xzl 已提交
1528 1529
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
1530
                  const std::vector<int>& dilations,
1531
                  phi::DenseTensor* filter_grad,
1532
                  const DataLayout data_layout = DataLayout::kNCHW) {
Z
zlx 已提交
1533
    const int batch_size = input.dims()[0];
1534
    const int input_channels =
1535
        (data_layout != DataLayout::kNHWC ? input.dims()[1] : input.dims()[3]);
1536
    const int input_height =
1537
        (data_layout != DataLayout::kNHWC ? input.dims()[2] : input.dims()[1]);
1538
    const int input_width =
1539
        (data_layout != DataLayout::kNHWC ? input.dims()[3] : input.dims()[2]);
1540
    const int output_channels =
1541
        (data_layout != DataLayout::kNHWC ? output_grad.dims()[1]
1542 1543
                                          : output_grad.dims()[3]);
    const int output_height =
1544
        (data_layout != DataLayout::kNHWC ? output_grad.dims()[2]
1545 1546
                                          : output_grad.dims()[1]);
    const int output_width =
1547
        (data_layout != DataLayout::kNHWC ? output_grad.dims()[3]
1548
                                          : output_grad.dims()[2]);
1549 1550
    const int ksize_height = filter_grad->dims()[2];
    const int ksize_width = filter_grad->dims()[3];
Z
zlx 已提交
1551 1552 1553 1554
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
1555 1556
    const int dilate_height = dilations[0];
    const int dilate_width = dilations[1];
Z
zlx 已提交
1557 1558 1559

    const T* input_data = input.data<T>();
    const T* output_grad_data = output_grad.data<T>();
1560
    T* filter_grad_data = filter_grad->mutable_data<T>(context.GetPlace());
Z
zlx 已提交
1561

1562
    int block_size = 512;
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
    int blocks;
    dim3 threads;
    dim3 grid;
    if (data_layout != DataLayout::kNHWC) {
      if (output_width > 1024 && output_width <= 2048) {
        block_size = (output_width - 1) / 2 + 1;
      } else if (output_width > 512 && output_width <= 1024) {
        block_size = output_width;
      }
      blocks = std::min(std::max(block_size / output_width, 1), output_height);
      grid = dim3(ksize_width, ksize_height, output_channels);
      threads = dim3(std::min(output_width, block_size), blocks, 1);
    } else {
      blocks = std::min(
          std::max(block_size / output_channels, 1),
          ((output_width + dilate_width - 1) / dilate_width) * dilate_width);
      grid = dim3((output_height + dilate_height - 1) / dilate_height,
H
hong 已提交
1580 1581
                  dilate_height,
                  batch_size);
1582 1583
      threads = dim3(std::min(output_channels, block_size), blocks, 1);
    }
1584 1585
    int filter_multiplier = output_channels / input_channels;

1586 1587 1588 1589 1590 1591 1592
#define check_case(c_filter_multiplier, c_stride, c_filter)                    \
  if (c_filter_multiplier == 0 ||                                              \
      filter_multiplier == c_filter_multiplier &&                              \
          stride_height == stride_width && stride_height == c_stride &&        \
          (ksize_height == ksize_width && ksize_height == c_filter ||          \
           c_filter == -1)) {                                                  \
    if (data_layout != DataLayout::kNHWC) {                                    \
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
      KernelDepthwiseConvFilterGradSp<T,                                       \
                                      c_filter_multiplier,                     \
                                      c_stride,                                \
                                      c_filter,                                \
                                      DataLayout::kNCHW,                       \
                                      fuse_relu_before_conv>                   \
          <<<grid, threads, 0, context.stream()>>>(output_grad_data,           \
                                                   input_data,                 \
                                                   batch_size,                 \
                                                   output_channels,            \
                                                   output_height,              \
                                                   output_width,               \
                                                   input_channels,             \
                                                   input_height,               \
                                                   input_width,                \
                                                   filter_multiplier,          \
                                                   ksize_height,               \
                                                   ksize_width,                \
                                                   stride_height,              \
                                                   stride_width,               \
                                                   padding_height,             \
                                                   padding_width,              \
                                                   dilate_height,              \
                                                   dilate_width,               \
                                                   filter_grad_data);          \
1618
    } else {                                                                   \
1619
      phi::DenseTensor filter_grad_hwc;                                        \
1620
      if (c_filter != -1) {                                                    \
H
hong 已提交
1621 1622 1623 1624
        framework::DDim filter_grad_hwc_dims({filter_grad->dims()[2],          \
                                              filter_grad->dims()[3],          \
                                              filter_grad->dims()[0],          \
                                              filter_grad->dims()[1]});        \
1625 1626
        filter_grad_hwc.Resize(filter_grad_hwc_dims);                          \
        filter_grad_hwc.mutable_data<T>(context.GetPlace());                   \
H
hong 已提交
1627
        phi::funcs::SetConstant<phi::GPUContext, T> set_zero;                  \
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
        set_zero(context, &filter_grad_hwc, static_cast<T>(0));                \
        filter_grad_data = filter_grad_hwc.data<T>();                          \
      } else {                                                                 \
        block_size = 512;                                                      \
        if (output_channels > 1024 && output_channels <= 2048) {               \
          block_size = (output_channels - 1) / 2 + 1;                          \
        } else if (output_channels > 512 && output_channels <= 1024) {         \
          block_size = output_channels;                                        \
        }                                                                      \
        blocks =                                                               \
            std::min(std::max(block_size / output_channels, 1), output_width); \
        grid = dim3(ksize_width * ksize_height, output_height, batch_size);    \
        threads = dim3(std::min(output_channels, block_size), blocks, 1);      \
      }                                                                        \
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
      KernelDepthwiseConvFilterGradSp<T,                                       \
                                      c_filter_multiplier,                     \
                                      c_stride,                                \
                                      c_filter,                                \
                                      DataLayout::kNHWC,                       \
                                      fuse_relu_before_conv>                   \
          <<<grid, threads, 0, context.stream()>>>(output_grad_data,           \
                                                   input_data,                 \
                                                   batch_size,                 \
                                                   output_channels,            \
                                                   output_height,              \
                                                   output_width,               \
                                                   input_channels,             \
                                                   input_height,               \
                                                   input_width,                \
                                                   filter_multiplier,          \
                                                   ksize_height,               \
                                                   ksize_width,                \
                                                   stride_height,              \
                                                   stride_width,               \
                                                   padding_height,             \
                                                   padding_width,              \
                                                   dilate_height,              \
                                                   dilate_width,               \
                                                   filter_grad_data);          \
1667 1668
      if (c_filter != -1) {                                                    \
        std::vector<int> perm_axis({2, 3, 0, 1});                              \
H
hong 已提交
1669
        phi::funcs::TransposeNormal<phi::GPUContext, T> trans;                 \
1670 1671 1672 1673
        trans(context, filter_grad_hwc, filter_grad, perm_axis);               \
      }                                                                        \
    }                                                                          \
    return;                                                                    \
1674
  }
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
    check_case(1, 1, 3);
    check_case(1, 1, 5);
    check_case(1, 1, -1);
    check_case(1, 2, 3);
    check_case(1, 2, 5);
    check_case(1, 2, -1);
    check_case(2, 1, 3);
    check_case(2, 1, 5);
    check_case(2, 1, -1);
    check_case(2, 2, 3);
    check_case(2, 2, 5);
    check_case(2, 2, -1);
    check_case(0, 0, -1);
1688
#undef check_case
Z
zlx 已提交
1689 1690 1691
  }
};

H
hong 已提交
1692 1693
template class DepthwiseConvFunctor<phi::GPUContext, float, false>;
template class DepthwiseConvFunctor<phi::GPUContext, double, false>;
1694
template class DepthwiseConvFunctor<phi::GPUContext, platform::float16, false>;
Z
zlx 已提交
1695

H
hong 已提交
1696 1697
template class DepthwiseConvInputGradFunctor<phi::GPUContext, float, false>;
template class DepthwiseConvInputGradFunctor<phi::GPUContext, double, false>;
1698 1699 1700
template class DepthwiseConvInputGradFunctor<phi::GPUContext,
                                             platform::float16,
                                             false>;
1701

H
hong 已提交
1702 1703
template class DepthwiseConvFilterGradFunctor<phi::GPUContext, float, false>;
template class DepthwiseConvFilterGradFunctor<phi::GPUContext, double, false>;
1704 1705 1706
template class DepthwiseConvFilterGradFunctor<phi::GPUContext,
                                              platform::float16,
                                              false>;
1707

H
hong 已提交
1708 1709
template class DepthwiseConvFunctor<phi::GPUContext, float, true>;
template class DepthwiseConvFunctor<phi::GPUContext, double, true>;
1710
template class DepthwiseConvFunctor<phi::GPUContext, platform::float16, true>;
1711

H
hong 已提交
1712 1713
template class DepthwiseConvInputGradFunctor<phi::GPUContext, float, true>;
template class DepthwiseConvInputGradFunctor<phi::GPUContext, double, true>;
1714 1715 1716
template class DepthwiseConvInputGradFunctor<phi::GPUContext,
                                             platform::float16,
                                             true>;
1717

H
hong 已提交
1718 1719
template class DepthwiseConvFilterGradFunctor<phi::GPUContext, float, true>;
template class DepthwiseConvFilterGradFunctor<phi::GPUContext, double, true>;
1720 1721 1722
template class DepthwiseConvFilterGradFunctor<phi::GPUContext,
                                              platform::float16,
                                              true>;
Z
zlx 已提交
1723 1724 1725 1726

}  // namespace math
}  // namespace operators
}  // namespace paddle