gaussian_random_op.cu 3.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14
#include <thrust/random.h>
15

Y
yaoxuefeng 已提交
16
#include "paddle/fluid/framework/generator.h"
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
19
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
20
#include "paddle/fluid/operators/fill_constant_op.h"
21
#include "paddle/phi/kernels/funcs/index_impl.cu.h"
Q
qijun 已提交
22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

template <typename T>
struct GaussianGenerator {
  T mean_, std_;
  unsigned int seed_;
Y
yaoxuefeng 已提交
30
  unsigned int offset_ = 0;
Q
qijun 已提交
31 32 33 34

  __host__ __device__ GaussianGenerator(T mean, T std, int seed)
      : mean_(mean), std_(std), seed_(seed) {}

Y
yaoxuefeng 已提交
35 36 37
  __host__ __device__ GaussianGenerator(T mean, T std, int seed, int offset)
      : mean_(mean), std_(std), seed_(seed), offset_(offset) {}

Q
qijun 已提交
38 39 40
  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
41
    using MT = typename details::MPTypeTrait<T>::Type;
42 43
    thrust::normal_distribution<MT> dist(static_cast<MT>(mean_),
                                         static_cast<MT>(std_));
Y
yaoxuefeng 已提交
44 45
    unsigned int new_n = n + offset_;
    rng.discard(new_n);
46 47
    MT out = dist(rng);
    return static_cast<T>(out);
Q
qijun 已提交
48 49 50
  }
};

51 52 53 54 55 56 57 58 59 60
template <typename T>
class GPUGaussianRandomBatchSizeLikeKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
    T mean = static_cast<T>(context.Attr<float>("mean"));
    T std = static_cast<T>(context.Attr<float>("std"));
    int64_t size = tensor->numel();
Y
yaoxuefeng 已提交
61

62
    int device_id = context.GetPlace().GetDeviceId();
63
    auto gen_cuda = framework::DefaultCUDAGenerator(device_id);
64 65
    auto& dev_cxt =
        context.template device_context<platform::CUDADeviceContext>();
Y
yaoxuefeng 已提交
66

67 68
    if (seed == 0) {
      // use global Generator seed
Y
yaoxuefeng 已提交
69
      auto seed_offset = gen_cuda->IncrementOffset(1);
70 71 72
      uint64_t seed = seed_offset.first;
      uint64_t offset = seed_offset.second;
      auto func = GaussianGenerator<T>(mean, std, seed, size * offset);
73
      phi::IndexKernel<T, GaussianGenerator<T>>(dev_cxt, tensor, func);
Y
yaoxuefeng 已提交
74
    } else {
75
      auto func = GaussianGenerator<T>(mean, std, seed);
76
      phi::IndexKernel<T, GaussianGenerator<T>>(dev_cxt, tensor, func);
Y
yaoxuefeng 已提交
77
    }
78 79
  }
};
Q
qijun 已提交
80 81
}  // namespace operators
}  // namespace paddle
D
dongzhihong 已提交
82

83 84
REGISTER_OP_CUDA_KERNEL(
    gaussian_random_batch_size_like,
85 86
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<
        paddle::platform::float16>,
87 88
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<float>,
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<double>);