gaussian_random_op.cu 3.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14
#include <thrust/random.h>
Y
yaoxuefeng 已提交
15
#include "paddle/fluid/framework/generator.h"
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
18
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
19
#include "paddle/fluid/operators/fill_constant_op.h"
20
#include "paddle/phi/kernels/funcs/index_impl.cu.h"
Q
qijun 已提交
21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

template <typename T>
struct GaussianGenerator {
  T mean_, std_;
  unsigned int seed_;
Y
yaoxuefeng 已提交
29
  unsigned int offset_ = 0;
Q
qijun 已提交
30 31 32 33

  __host__ __device__ GaussianGenerator(T mean, T std, int seed)
      : mean_(mean), std_(std), seed_(seed) {}

Y
yaoxuefeng 已提交
34 35 36
  __host__ __device__ GaussianGenerator(T mean, T std, int seed, int offset)
      : mean_(mean), std_(std), seed_(seed), offset_(offset) {}

Q
qijun 已提交
37 38 39
  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
40
    using MT = typename details::MPTypeTrait<T>::Type;
41 42
    thrust::normal_distribution<MT> dist(static_cast<MT>(mean_),
                                         static_cast<MT>(std_));
Y
yaoxuefeng 已提交
43 44
    unsigned int new_n = n + offset_;
    rng.discard(new_n);
45 46
    MT out = dist(rng);
    return static_cast<T>(out);
Q
qijun 已提交
47 48 49
  }
};

50 51 52 53 54 55 56
template <typename T>
class GPUGaussianRandomBatchSizeLikeKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Y
yaoxuefeng 已提交
57
    bool seed_flag = false;
58 59 60
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
Y
yaoxuefeng 已提交
61
      seed_flag = true;
62 63 64 65
    }
    T mean = static_cast<T>(context.Attr<float>("mean"));
    T std = static_cast<T>(context.Attr<float>("std"));
    int64_t size = tensor->numel();
Y
yaoxuefeng 已提交
66

67
    int device_id = context.GetPlace().GetDeviceId();
Y
yaoxuefeng 已提交
68
    auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);
69 70
    auto& dev_cxt =
        context.template device_context<platform::CUDADeviceContext>();
Y
yaoxuefeng 已提交
71 72 73

    if (gen_cuda->GetIsInitPy() && seed_flag) {
      auto seed_offset = gen_cuda->IncrementOffset(1);
Y
Yang 已提交
74
      int64_t gen_offset = size * seed_offset.second;
75 76
      auto func = GaussianGenerator<T>(mean, std, seed_offset.first,
                                       seed_offset.second);
77
      phi::IndexKernel<T, GaussianGenerator<T>>(dev_cxt, tensor, func);
Y
yaoxuefeng 已提交
78
    } else {
79
      auto func = GaussianGenerator<T>(mean, std, seed);
80
      phi::IndexKernel<T, GaussianGenerator<T>>(dev_cxt, tensor, func);
Y
yaoxuefeng 已提交
81
    }
82 83
  }
};
Q
qijun 已提交
84 85
}  // namespace operators
}  // namespace paddle
D
dongzhihong 已提交
86

87 88
REGISTER_OP_CUDA_KERNEL(
    gaussian_random_batch_size_like,
89 90
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<
        paddle::platform::float16>,
91 92
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<float>,
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<double>);