attention_lstm_op.cc 18.9 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/attention_lstm_op.h"
#include <string>
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/cpu_vec.h"
19
#include "paddle/fluid/operators/math/fc.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/platform/cpu_info.h"
21

T
tensor-tang 已提交
22 23 24
namespace paddle {
namespace operators {

25
void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
26 27 28 29 30 31 32 33
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasInput("C0"), "Input", "C0", "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasInput("LSTMWeight"), "Input", "LSTMWeight",
                 "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasInput("LSTMBias"), "Input", "LSTMBias",
                 "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasInput("AttentionWeight"), "Input", "AttentionWeight",
                 "AttentionLstm");
T
tensor-tang 已提交
34

35 36 37 38 39 40 41 42 43
  OP_INOUT_CHECK(ctx->HasOutput("Hidden"), "Output", "Hidden", "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasOutput("Cell"), "Output", "Cell", "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasOutput("AttentionedX"), "Output", "AttentionedX",
                 "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasOutput("AttentionFCOut"), "Output", "AttentionFCOut",
                 "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasOutput("LSTMX"), "Output", "LSTMX", "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasOutput("LSTMOUT"), "Output", "LSTMOUT",
                 "AttentionLstm");
T
tensor-tang 已提交
44 45

  auto x_dims = ctx->GetInputDim("X");
T
tensor-tang 已提交
46
  const int M = x_dims[1];
47 48
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, platform::errors::InvalidArgument(
                                          "Input(X)'s rank must be 2."));
T
tensor-tang 已提交
49

T
tensor-tang 已提交
50 51
  auto w_dims = ctx->GetInputDim("LSTMWeight");
  const int D = w_dims[1] / 4;
52 53 54 55 56 57 58
  PADDLE_ENFORCE_EQ(
      w_dims.size(), 2,
      platform::errors::InvalidArgument("Input(LSTMWeight)'s rank must be 2."));
  PADDLE_ENFORCE_EQ(
      w_dims[0], D + M,
      platform::errors::InvalidArgument(
          "LSTMWeight dims should be (%d + %d) * %d.", D, M, 4 * D));
T
tensor-tang 已提交
59 60

  auto b_dims = ctx->GetInputDim("LSTMBias");
61 62 63 64 65 66 67 68
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, platform::errors::InvalidArgument(
                                          "Input(LSTMBias)'s rank must be 2."));
  PADDLE_ENFORCE_EQ(b_dims[0], 1,
                    platform::errors::InvalidArgument(
                        "LSTMBias dims should be 1 x %d.", 4 * D));
  PADDLE_ENFORCE_EQ(b_dims[1], 4 * D,
                    platform::errors::InvalidArgument(
                        "LSTMBias dims should be 1 x %d.", 4 * D));
T
tensor-tang 已提交
69 70

  auto c_dims = ctx->GetInputDim("C0");
71 72
  PADDLE_ENFORCE_EQ(c_dims.size(), 2, platform::errors::InvalidArgument(
                                          "Input(C0)'s rank must be 2."));
T
tensor-tang 已提交
73
  if (ctx->IsRuntime()) {
74 75
    PADDLE_ENFORCE_EQ(c_dims[1], D, platform::errors::InvalidArgument(
                                        "C0 dims should be N x %d.", D));
T
tensor-tang 已提交
76 77
  }

78
  if (ctx->HasInput("H0")) {
T
tensor-tang 已提交
79
    auto h_dims = ctx->GetInputDim("H0");
80 81
    PADDLE_ENFORCE_EQ(h_dims.size(), 2UL, platform::errors::InvalidArgument(
                                              "Input(H0)'s rank must be 2."));
T
update  
tensor-tang 已提交
82 83
    if (ctx->IsRuntime() ||
        (framework::product(c_dims) > 0 && framework::product(h_dims) > 0)) {
84 85 86 87
      PADDLE_ENFORCE_EQ(h_dims, c_dims,
                        platform::errors::InvalidArgument(
                            "The dimension of Input(H0) and Input(C0) "
                            "should be the same."));
T
update  
tensor-tang 已提交
88
    }
T
tensor-tang 已提交
89 90
  }

T
tensor-tang 已提交
91 92
  auto atten_w_dims = ctx->GetInputDim("AttentionWeight");
  PADDLE_ENFORCE_EQ(atten_w_dims.size(), 2,
93 94
                    platform::errors::InvalidArgument(
                        "Input(AttentionWeight)'s rank must be 2."));
T
update  
tensor-tang 已提交
95
  PADDLE_ENFORCE_EQ(atten_w_dims[0], M + D,
96 97
                    platform::errors::InvalidArgument(
                        "AttentionWeight shapes must be (%d + %d) * 1.", M, D));
T
update  
tensor-tang 已提交
98
  PADDLE_ENFORCE_EQ(atten_w_dims[1], 1,
99 100
                    platform::errors::InvalidArgument(
                        "AttentionWeight shapes must be (%d + %d) * 1.", M, D));
T
tensor-tang 已提交
101

102
  if (ctx->HasInput("AttentionBias")) {
T
tensor-tang 已提交
103 104
    auto atten_b_dims = ctx->GetInputDim("AttentionBias");
    PADDLE_ENFORCE_EQ(atten_b_dims.size(), 2,
105 106
                      platform::errors::InvalidArgument(
                          "Input(AttentionBias)'s rank must be 2."));
T
update  
tensor-tang 已提交
107
    PADDLE_ENFORCE_EQ(atten_b_dims[0], 1,
108 109
                      platform::errors::InvalidArgument(
                          "AttentionBias shapes must be 1 * 1."));
T
update  
tensor-tang 已提交
110
    PADDLE_ENFORCE_EQ(atten_b_dims[1], 1,
111 112
                      platform::errors::InvalidArgument(
                          "AttentionBias shapes must be 1 * 1."));
T
tensor-tang 已提交
113 114
  }

115
  if (ctx->HasInput("AttentionScalar")) {
T
tensor-tang 已提交
116 117
    auto dims = ctx->GetInputDim("AttentionScalar");
    PADDLE_ENFORCE_EQ(dims.size(), 2,
118 119 120 121 122 123
                      platform::errors::InvalidArgument(
                          "Input(AttentionScalar)'s rank must be 2."));
    PADDLE_ENFORCE_EQ(dims[0], 1, platform::errors::InvalidArgument(
                                      "AttentionScalar shapes must be 1 * 1."));
    PADDLE_ENFORCE_EQ(dims[1], 1, platform::errors::InvalidArgument(
                                      "AttentionScalar shapes must be 1 * 1."));
T
tensor-tang 已提交
124 125
  }

126
  if (ctx->HasInput("AttentionScalarBias")) {
T
tensor-tang 已提交
127
    auto dims = ctx->GetInputDim("AttentionScalarBias");
128 129
    OP_INOUT_CHECK(ctx->HasInput("AttentionScalar"), "Input", "AttentionScalar",
                   "AttentionLstm");
T
tensor-tang 已提交
130
    PADDLE_ENFORCE_EQ(dims.size(), 2,
131 132 133 134 135 136 137 138
                      platform::errors::InvalidArgument(
                          "Input(AttentionScalarBias)'s rank must be 2."));
    PADDLE_ENFORCE_EQ(dims[0], 1,
                      platform::errors::InvalidArgument(
                          "AttentionScalarBias shapes must be 1 * 1."));
    PADDLE_ENFORCE_EQ(dims[1], 1,
                      platform::errors::InvalidArgument(
                          "AttentionScalarBias shapes must be 1 * 1."));
T
tensor-tang 已提交
139 140 141
  }

  framework::DDim out_dims({x_dims[0], D});
T
tensor-tang 已提交
142 143
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
144 145 146 147
  ctx->SetOutputDim("AttentionedX", {x_dims[0], 1});
  ctx->SetOutputDim("LSTMX", {1, M});
  ctx->SetOutputDim("LSTMOUT", {1, 4 * D});
  // AttentionFCOut should be reshape as (maxseqlen,1) in runtime
T
tensor-tang 已提交
148 149 150 151
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
}

152
framework::OpKernelType AttentionLSTMOp::GetExpectedKernelType(
T
tensor-tang 已提交
153
    const framework::ExecutionContext& ctx) const {
154 155
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.device_context());
T
tensor-tang 已提交
156 157
}

158
void AttentionLSTMOpMaker::Make() {
T
tensor-tang 已提交
159 160 161 162 163
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
           "variable-time length input sequence. The underlying tensor in "
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
164 165 166 167 168
  AddInput("C0",
           "(Tensor) LSTM C0"
           "This is a tensor with shape (N x D), where N is the batch size, D "
           "is the gate size."
           "C0 is necessary because of attention.");
T
tensor-tang 已提交
169
  AddInput("H0",
170 171 172
           "(Tensor, optional) LSTM H0"
           "This is a tensor with shape (N x D), where N is the "
           "batch size and D is the gate size.")
T
tensor-tang 已提交
173
      .AsDispensable();
174 175 176 177
  AddInput("AttentionWeight",
           "(Tensor) the weights of attention fc. Always relu the fc result."
           "The shape is ((M+D) x 1), where M is the dim size of x, D is the "
           "gate size of LSTM.");
T
tensor-tang 已提交
178 179
  AddInput("AttentionBias",
           "(Tensor, optional) the bias of attention fc."
180 181 182 183 184 185 186 187 188 189
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalar",
           "(Tensor, optional) the scalar on the result of attentioned fc. "
           "Always relu the Scalar."
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalarBias",
           "(Tensor, optional) the scalar bias of attention fc."
           "The shape is (1 x 1)")
T
tensor-tang 已提交
190
      .AsDispensable();
191 192 193 194 195 196 197 198 199 200
  AddInput("LSTMWeight",
           "(Tensor) the combined weight of LSTM"
           " - The shape is ((D+M) x 4D), where D is the hidden gate size, M "
           "is the dim size of x"
           " - Weight = {W_forget, W_input, W_output, W_cell}");
  AddInput("LSTMBias",
           "(Tensor) the combined bias of LSTM, shape (1x4D)."
           "Note: we should add the bias of hidden and context accorindg to "
           "the same gate: "
           "{B_forget, B_input, B_output, B_cell}");
T
tensor-tang 已提交
201 202 203 204 205 206
  AddOutput("Hidden",
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
207 208 209 210
  AddOutput("AttentionedX",
            "(Tensor) shape is (T x 1), the result after X * AttentionWeight,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size.")
T
tensor-tang 已提交
211
      .AsIntermediate();
212 213
  AddOutput("AttentionFCOut",
            "(Tensor) (max_seq_len, 1), compute at each step.")
T
tensor-tang 已提交
214
      .AsIntermediate();
215 216 217 218 219 220 221 222 223
  AddOutput("LSTMX",
            "(Tensor) the input X of LSTM for each step."
            "Shape is (1 x M), where M is the x frame size")
      .AsIntermediate();
  AddOutput(
      "LSTMOUT",
      "(Tensor) the output of LSTM X(1*(D+M))* weight((D+M)*4D) for each step."
      "Shape is (1 x 4D), where M is the x frame size")
      .AsIntermediate();
T
tensor-tang 已提交
224 225 226 227 228
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
229
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
230 231
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
翟飞跃 已提交
232
                       "The activation for cell output, `tanh` by default.")
T
tensor-tang 已提交
233
      .SetDefault("tanh")
234
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
235 236 237 238 239
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
240
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
241
  AddComment(R"DOC(
242 243 244 245 246 247 248 249 250 251 252 253 254 255
Attention Long-Short Term Memory (LSTM) Operator.

Attention part:
concat( x(seqlen * M), expand( cell_t-1(1,D) ) ) => tmp(seqlen*(M+D))

tmp(seqlen*(M+D)) * fc((M+D)*1) => fcout(seqlen*1) with bias, relu

fcout(seqlen*1) * scalar => fcout(seqlen*1) with bias, relu

dotmul and sum pool ( fcout(seqlen*1), x(seqlen * M) ) => lstm_x_t(1, M) 

LSTM part:
use lstm_x_t as input and compute as standard LSTM.

T
tensor-tang 已提交
256 257 258
)DOC");
}

259 260 261 262
// y[i] = (x[i] + bias[0]) > 0 ? (x[i] + bias[0]) : 0;
template <typename T>
inline void bias_relu(const int n, const T* x, const T* bias, T* y) {
  if (bias) {
T
tensor-tang 已提交
263 264
    math::vec_add_bias<T, platform::avx>(n, *bias, x, y);
    math::vec_relu<T, platform::avx>(n, y, y);
265
  } else {
T
tensor-tang 已提交
266
    math::vec_relu<T, platform::avx>(n, x, y);
267 268 269
  }
}

T
tensor-tang 已提交
270 271
template <typename T>
inline void vec_softmax(const int n, const T* x, T* y) {
272 273 274 275 276
  T scalar = x[0];
  // max
  for (int i = 1; i < n; ++i) {
    scalar = scalar < x[i] ? x[i] : scalar;
  }
T
tensor-tang 已提交
277 278
  math::vec_add_bias<T, platform::avx>(n, -scalar, x, y);  // sub
  math::vec_exp<T>(n, y, y);                               // exp
279 280 281 282 283
  // sum
  scalar = T(0);
  for (int i = 0; i < n; ++i) {
    scalar += y[i];
  }
T
tensor-tang 已提交
284
  math::vec_scal<T>(n, static_cast<T>(1) / scalar, y);  // scale
285 286
}

T
tensor-tang 已提交
287
template <typename T>
288
class AttentionLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
289 290
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
291
    using DeviceContext = paddle::platform::CPUDeviceContext;
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

    auto* x = ctx.Input<LoDTensor>("X");
    auto* h0 = ctx.Input<Tensor>("H0");
    auto* c0 = ctx.Input<Tensor>("C0");
    auto* atten_w = ctx.Input<Tensor>("AttentionWeight");
    auto* atten_b = ctx.Input<Tensor>("AttentionBias");
    auto* atten_scalar = ctx.Input<Tensor>("AttentionScalar");
    auto* atten_scalar_bias = ctx.Input<Tensor>("AttentionScalarBias");
    auto* lstm_w = ctx.Input<Tensor>("LSTMWeight");
    auto* lstm_b = ctx.Input<Tensor>("LSTMBias");

    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
    auto* cell_out = ctx.Output<LoDTensor>("Cell");
    auto* atted_x = ctx.Output<Tensor>("AttentionedX");
    auto* fc_out = ctx.Output<Tensor>("AttentionFCOut");
    auto* lstm_x = ctx.Output<Tensor>("LSTMX");
    auto* lstm_out = ctx.Output<Tensor>("LSTMOUT");
T
tensor-tang 已提交
309 310 311 312 313

    // some shape should be reshape here since infershape can not get lod info
    auto x_lod = x->lod();
    const int N = x_lod[0].size() - 1;  // batch size
    auto x_dims = x->dims();            // T x M
T
tensor-tang 已提交
314 315 316 317
    auto w_dims = lstm_w->dims();       // (D+M) x 4D
    const int total_T = x_dims[0];
    const int M = x_dims[1];      // x frame size
    const int D = w_dims[1] / 4;  // gate frame size
T
tensor-tang 已提交
318 319 320 321 322 323 324 325
    const int D2 = D * 2;
    const int D3 = D * 3;
    const int D4 = w_dims[1];
    int max_seq_len = x_lod[0][1];
    for (int i = 1; i < N; ++i) {
      int len = x_lod[0][i + 1] - x_lod[0][i];
      max_seq_len = max_seq_len < len ? len : max_seq_len;
    }
326 327 328 329 330
    PADDLE_ENFORCE_EQ(x_lod.size(), 1UL, platform::errors::InvalidArgument(
                                             "Input(X)'s lod size must be 1."));
    PADDLE_ENFORCE_EQ(
        c0->dims()[0], N,
        platform::errors::InvalidArgument("C0 dims should be %d x %d.", N, D));
T
tensor-tang 已提交
331
    fc_out->Resize({max_seq_len, 1});
T
tensor-tang 已提交
332

333
    std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand;
T
tensor-tang 已提交
334 335 336
    auto& act_gate_str = ctx.Attr<std::string>("gate_activation");
    auto& act_cell_str = ctx.Attr<std::string>("cell_activation");
    auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");
T
tensor-tang 已提交
337 338
    if (platform::MayIUse(platform::avx)) {
      math::VecActivations<T, platform::avx> act_functor;
T
tensor-tang 已提交
339 340 341 342
      act_gate = act_functor(act_gate_str);
      act_cell = act_functor(act_cell_str);
      act_cand = act_functor(act_cand_str);
    } else {
T
tensor-tang 已提交
343
      math::VecActivations<T, platform::isa_any> act_functor;
T
tensor-tang 已提交
344 345 346 347
      act_gate = act_functor(act_gate_str);
      act_cell = act_functor(act_cell_str);
      act_cand = act_functor(act_cand_str);
    }
T
tensor-tang 已提交
348

T
tensor-tang 已提交
349
    const T* x_data = x->data<T>();
T
tensor-tang 已提交
350
    const T* h0_data = h0 ? h0->data<T>() : NULL;
351 352 353 354 355 356 357 358 359
    const T* c0_data = c0->data<T>();
    const T* lstm_w_data = lstm_w->data<T>();
    const T* lstm_b_data = lstm_b->data<T>();
    const T* atten_w_data = atten_w->data<T>();
    const T* atten_b_data = atten_b ? atten_b->data<T>() : NULL;
    const T* atten_scalar_data = atten_scalar ? atten_scalar->data<T>() : NULL;
    const T* atten_scalar_bias_data =
        atten_scalar_bias ? atten_scalar_bias->data<T>() : NULL;

T
tensor-tang 已提交
360 361 362 363 364 365
    T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());
    T* cell_out_data = cell_out->mutable_data<T>(ctx.GetPlace());
    T* atted_x_data = atted_x->mutable_data<T>(ctx.GetPlace());
    T* fc_out_data = fc_out->mutable_data<T>(ctx.GetPlace());
    T* lstm_x_data = lstm_x->mutable_data<T>(ctx.GetPlace());
    T* lstm_out_data = lstm_out->mutable_data<T>(ctx.GetPlace());
366

367 368
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);

369
    // x(TxM) * fc (Mx1) part of atten_wgt(M+D)x1
370 371 372 373
    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
    math::FCFunctor<DeviceContext, T> fc;
    fc(dev_ctx, total_T, 1, M, x_data, atten_w_data, atted_x_data,
       atten_b_data);
374

T
tensor-tang 已提交
375
    const T* cur_atten_x_data = atted_x_data;
376 377 378 379 380
    const T* cur_x_data = x_data;
    const T* prev_cell_data = NULL;
    const T* prev_hidden_data = NULL;
    T* cur_cell_out_data = cell_out_data;
    T* cur_hidden_out_data = hidden_out_data;
T
tensor-tang 已提交
381
    for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
382
      int seq_len = x_lod[0][i + 1] - x_lod[0][i];
383
      prev_cell_data = c0_data + i * D;
T
tensor-tang 已提交
384
      prev_hidden_data = h0_data ? h0_data + i * D : NULL;
385
      for (int step = 0; step < seq_len; ++step) {
T
tensor-tang 已提交
386 387
        /// 1. compute attention vector
        // 1a. prev_cell(1xD) * fc(D) rest part of atten_wgt
T
tensor-tang 已提交
388
        T prev_cell_bias = blas.DOT(D, prev_cell_data, atten_w_data + M);
T
tensor-tang 已提交
389 390 391
        // 1b. add cell bias and relu
        bias_relu<T>(seq_len, cur_atten_x_data, &prev_cell_bias, fc_out_data);
        // 1c. fc scalar
392
        if (atten_scalar_data) {
T
tensor-tang 已提交
393
          blas.SCAL(seq_len, *atten_scalar_data, fc_out_data);
394 395 396
          bias_relu<T>(seq_len, fc_out_data, atten_scalar_bias_data,
                       fc_out_data);
        }
T
tensor-tang 已提交
397
        // 1d. softmax
T
tensor-tang 已提交
398
        vec_softmax<T>(seq_len, fc_out_data, fc_out_data);
399
        // mul x(seq_len*M) and sum pool
400
        fc(dev_ctx, 1, M, seq_len, fc_out_data, cur_x_data, lstm_x_data);
401

T
tensor-tang 已提交
402
        /// 2. compute LSTM step
403 404 405 406 407 408 409 410 411 412 413 414 415
        // lstm weight : concat[forget , input , output , tilde]
        // shape : (D + M) x (4 * D)
        // fc inputX(1xM) * weightX(M*(4D))  => 1 x 4D
        blas.MatMul(1, D4, M, lstm_x_data, lstm_w_data + D * D4, lstm_out_data);
        if (prev_hidden_data) {
          blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast<T>(1),
                    prev_hidden_data, D, lstm_w_data, D4, static_cast<T>(1),
                    lstm_out_data, D4);
        }
        // since input is 1xM, so can use add bias
        blas.VADD(D4, lstm_b_data, lstm_out_data, lstm_out_data);

        // gate act: sigmoid
416
        act_gate(D3, lstm_out_data, lstm_out_data);
417
        // candicate act: tanh
418
        act_cand(D, lstm_out_data + D3, lstm_out_data + D3);
419 420 421 422 423

        // a = forget * prev_cell
        blas.VMUL(D, lstm_out_data, prev_cell_data, lstm_out_data);

        // b = input * tilde
T
tensor-tang 已提交
424
        blas.VMUL(D, lstm_out_data + D, lstm_out_data + D3, lstm_out_data + D);
425 426 427 428 429

        // cell_out = a + b
        blas.VADD(D, lstm_out_data, lstm_out_data + D, cur_cell_out_data);

        // state act tanh(cell_out) * output_gate
430
        act_cell(D, cur_cell_out_data, lstm_out_data);
T
tensor-tang 已提交
431
        blas.VMUL(D, lstm_out_data, lstm_out_data + D2, cur_hidden_out_data);
432

T
tensor-tang 已提交
433
        prev_hidden_data = cur_hidden_out_data;
434 435 436
        prev_cell_data = cur_cell_out_data;
        cur_cell_out_data = cur_cell_out_data + D;
        cur_hidden_out_data = cur_hidden_out_data + D;
T
tensor-tang 已提交
437
      }
438
      cur_x_data = cur_x_data + seq_len * M;
T
tensor-tang 已提交
439
      cur_atten_x_data = cur_atten_x_data + seq_len;
T
tensor-tang 已提交
440 441 442 443 444 445 446 447
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
448
REGISTER_OPERATOR(attention_lstm, ops::AttentionLSTMOp,
449
                  ops::AttentionLSTMOpMaker);
T
tensor-tang 已提交
450

T
tensor-tang 已提交
451 452
REGISTER_OP_CPU_KERNEL(attention_lstm, ops::AttentionLSTMKernel<float>,
                       ops::AttentionLSTMKernel<double>);