layer_norm_kernel.cu.h 70.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

25 26
#include <iostream>

27
#include "paddle/fluid/operators/fused/quant_dequant_kernel.h"
28 29
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
30
#include "paddle/phi/core/ddim.h"
31
#include "paddle/phi/kernels/funcs/aligned_vector.h"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;
template <typename T>
using LayerNormParamType = typename CudnnDataType<T>::BatchNormParamType;

inline static int GetDesiredBlockDim(int64_t block_dim) {
#ifdef __HIPCC__
  const int kMaxBlockDim = 256;
  const int lwarpSize = 64;
#else
  const int kMaxBlockDim = 512;
  const int lwarpSize = 32;
#endif
  return block_dim >= kMaxBlockDim ? kMaxBlockDim : lwarpSize;
}

template <typename U>
static __forceinline__ __device__ U WarpReduceSum(U val) {
  unsigned mask = 0u;
  CREATE_SHFL_MASK(mask, true);
  for (int offset = warpSize / 2; offset > 0; offset /= 2) {
    val += paddle::platform::CudaShuffleDownSync(mask, val, offset);
  }
  return val;
}

template <typename U>
__forceinline__ __device__ U BlockReduceSum(U val, U *shared) {
  int lane = threadIdx.x % warpSize;
  int wid = threadIdx.x / warpSize;

  val = WarpReduceSum(val);  // Each warp performs partial reduction

  __syncthreads();
  if (lane == 0) shared[wid] = val;  // Write reduced value to shared memory

  __syncthreads();  // Wait for all partial reductions
  // read from shared memory only if that warp existed
  val =
      (threadIdx.x < blockDim.x / warpSize) ? shared[lane] : static_cast<U>(0);

  if (wid == 0) val = WarpReduceSum(val);  // Final reduce within first warp

  return val;
}

#define FIXED_BLOCK_DIM_CASE_BASE(log2_block_dim, ...)  \
  case (1 << (log2_block_dim)): {                       \
    constexpr auto kBlockDim = (1 << (log2_block_dim)); \
    __VA_ARGS__;                                        \
  } break

#define FIXED_BLOCK_DIM_CASE(...)              \
  FIXED_BLOCK_DIM_CASE_BASE(9, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(8, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(7, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(6, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(5, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(4, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(3, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(2, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(1, ##__VA_ARGS__)

#define FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(                          \
    log2_block_dim, feature_size, kMaxBlockNum, ...)                        \
  case (1 << (log2_block_dim)): {                                           \
    for (int64_t i = 0; i < std::ceil(feature_size / (1.0 * kMaxBlockNum)); \
         i++) {                                                             \
      int64_t col_offset = i * static_cast<int64_t>(kMaxBlockNum);          \
      int block_num = static_cast<int>(std::min(                            \
          feature_size - col_offset, static_cast<int64_t>(kMaxBlockNum)));  \
      constexpr auto kBlockDim = (1 << (log2_block_dim));                   \
      __VA_ARGS__;                                                          \
    }                                                                       \
  } break

#define FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(feature_size, kMaxBlockNum, ...) \
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(                                  \
      9, feature_size, kMaxBlockNum, ##__VA_ARGS__);                          \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(                                  \
      8, feature_size, kMaxBlockNum, ##__VA_ARGS__);                          \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(                                  \
      7, feature_size, kMaxBlockNum, ##__VA_ARGS__);                          \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(                                  \
      6, feature_size, kMaxBlockNum, ##__VA_ARGS__);                          \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(                                  \
      5, feature_size, kMaxBlockNum, ##__VA_ARGS__);                          \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(                                  \
      4, feature_size, kMaxBlockNum, ##__VA_ARGS__);                          \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(                                  \
      3, feature_size, kMaxBlockNum, ##__VA_ARGS__);                          \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(                                  \
      2, feature_size, kMaxBlockNum, ##__VA_ARGS__);                          \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(                                  \
      1, feature_size, kMaxBlockNum, ##__VA_ARGS__)
132 133

static __device__ __forceinline__ float real_sqrt(float x) { return sqrtf(x); }
S
sneaxiy 已提交
134 135 136
static __device__ __forceinline__ double real_sqrt(double x) {
  return ::sqrt(x);
}
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

template <typename T>
struct PairForLayerNorm {
  __device__ __forceinline__ PairForLayerNorm() {}
  __device__ __forceinline__ PairForLayerNorm(const T &first, const T &second)
      : first_(first), second_(second) {}

  T first_;
  T second_;
};

template <typename T>
struct PairForLayerNormAddFunctor {
  __device__ __forceinline__ PairForLayerNorm<T> operator()(
      const PairForLayerNorm<T> &p1, const PairForLayerNorm<T> &p2) {
    return PairForLayerNorm<T>(p1.first_ + p2.first_, p1.second_ + p2.second_);
  }
};

template <typename T>
__inline__ __device__ T rsqrt_(const T val) {
  return static_cast<T>(1) / sqrt(val);
}

template <>
__inline__ __device__ float rsqrt_(const float val) {
  return rsqrtf(val);
}

template <>
__inline__ __device__ double rsqrt_(const double val) {
S
sneaxiy 已提交
168
  return ::rsqrt(val);
169 170 171 172 173 174 175 176 177
}

#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
template <>
__inline__ __device__ half rsqrt_(const half val) {
  return hrsqrt(val);
}
#endif

178
#ifdef PADDLE_WITH_CUDA
179 180 181 182 183 184 185 186 187
template <typename T,
          typename U,
          typename ScaleT = U,
          int VecSize = 8,
          int WARPS_M = 4,
          int WARPS_N = 1,
          int BYTES_PER_LDG = 16,
          int ELTS_PER_ROW = 1024,
          int THREADS_PER_WARP = 32,
188 189 190 191 192
          int THREADS_PER_ROW = WARPS_N *THREADS_PER_WARP,
          int THREADS_PER_CTA = WARPS_M *THREADS_PER_ROW,
          int ROWS_PER_CTA = WARPS_M,
          int ELTS_PER_ROW_PER_CTA = THREADS_PER_ROW *VecSize,
          int LDGS = ELTS_PER_ROW / ELTS_PER_ROW_PER_CTA>
193
__global__ __launch_bounds__(THREADS_PER_CTA) void fast_ln_fwd_kernel(
194 195 196 197 198 199 200 201
    int rows,
    int cols,
    const float epsilon,
    const T *__restrict__ x_ptr,
    const ScaleT *__restrict__ gamma_ptr,
    const ScaleT *__restrict__ beta_ptr,
    U *__restrict__ mean_out_ptr,
    U *__restrict__ var_out_ptr,
202
    T *__restrict__ y_ptr) {
203
  __shared__ U smem[WARPS_M * WARPS_N];
204 205
  using Vec = phi::AlignedVector<T, VecSize>;
  using Vec_scale = phi::AlignedVector<ScaleT, VecSize>;
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

  const int tidx = threadIdx.x;
  const int bidx = blockIdx.x;
  const int lane = tidx % THREADS_PER_WARP;  // 0, 1, ..., 31
  const int warp = tidx / THREADS_PER_WARP;  // 0, 1, 2, 3
  const int warp_n = warp % WARPS_N;         // 0
  const int warp_m = warp / WARPS_N;         // 0, 1, 2, 3

  const int c = warp_n * THREADS_PER_WARP + lane;  // lane
  const int r = bidx * ROWS_PER_CTA + warp_m;      // row id

  Vec_scale gamma[LDGS];
  Vec_scale beta[LDGS];
#pragma unroll
  for (int it = 0, col = c; it < LDGS; it++) {
221 222
    phi::Load<ScaleT, VecSize>(gamma_ptr + col * VecSize, &gamma[it]);
    phi::Load<ScaleT, VecSize>(beta_ptr + col * VecSize, &beta[it]);
223 224 225
    col += THREADS_PER_ROW;
  }

226
  constexpr U rn = 1.f / U(ELTS_PER_ROW);
227 228 229 230
  for (int row = r; row < rows; row += gridDim.x * ROWS_PER_CTA) {
    Vec x[LDGS];
#pragma unroll
    for (int it = 0, col = c; it < LDGS; it++) {
231
      phi::Load<T, VecSize>(x_ptr + row * ELTS_PER_ROW + col * VecSize, &x[it]);
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
      col += THREADS_PER_ROW;
    }
    U xf[LDGS * VecSize];

    U mu_local = 0.f;

#pragma unroll
    for (int it = 0; it < LDGS; it++) {
#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        xf[it * VecSize + jt] = U(x[it][jt]);
        mu_local += xf[it * VecSize + jt];
      }
    }

#pragma unroll
    for (int it = 1; it < THREADS_PER_WARP; it *= 2) {
      mu_local += __shfl_xor_sync(uint32_t(-1), mu_local, it);
    }
251 252 253 254 255
    if (WARPS_N > 1) {
      if (lane == 0) {
        smem[warp_m * WARPS_N + warp_n] = mu_local;
      }
      __syncthreads();
256
      if (tidx % THREADS_PER_ROW == 0) {
257 258 259 260 261 262 263 264 265 266 267
        mu_local = 0.f;
#pragma unroll
        for (int it = 0; it < WARPS_N; ++it) {
          mu_local += smem[warp_m * WARPS_N + it];
        }
        smem[warp_m] = mu_local;
      }
      __syncthreads();
      mu_local = smem[warp_m];
    }

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    mu_local *= rn;
    if (lane == 0) {
      mean_out_ptr[row] = mu_local;
    }
    U var_local = 0.f;

#pragma unroll
    for (int it = 0; it < LDGS; it++) {
#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        U diff = xf[it * VecSize + jt] - mu_local;
        var_local += diff * diff;
      }
    }

#pragma unroll
    for (int it = 1; it < THREADS_PER_WARP; it *= 2) {
      var_local += __shfl_xor_sync(uint32_t(-1), var_local, it);
    }
287 288 289 290 291 292

    if (WARPS_N > 1) {
      if (lane == 0) {
        smem[warp_m * WARPS_N + warp_n] = var_local;
      }
      __syncthreads();
293
      if (tidx % THREADS_PER_ROW == 0) {
294 295 296 297 298 299 300 301 302 303 304
        var_local = 0.f;
#pragma unroll
        for (int it = 0; it < WARPS_N; ++it) {
          var_local += smem[warp_m * WARPS_N + it];
        }
        smem[warp_m] = var_local;
      }
      __syncthreads();
      var_local = smem[warp_m];
    }

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    // Note: to assure if it is right for double
    U rsigma = rsqrtf(var_local * rn + epsilon);
    if (lane == 0) {
      var_out_ptr[row] = var_local * rn;
    }

#pragma unroll
    for (int it = 0; it < LDGS; it++) {
#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        // use fp16 to compute
        // ScaleT tmp = static_cast<ScaleT>(rsigma * (xf[it * VecSize + jt] -
        // mu_local));
        // x[it][jt] = gamma[it][jt] *  tmp + beta[it][jt];
        // cast to fp32 to compute
        U tmp = (rsigma * (static_cast<U>(xf[it * VecSize + jt]) - mu_local));
        x[it][jt] = static_cast<T>(static_cast<U>(gamma[it][jt]) * tmp +
                                   static_cast<U>(beta[it][jt]));
      }
    }

#pragma unroll
    for (int it = 0, col = c; it < LDGS; it++) {
328
      phi::Store<T, VecSize>(x[it], y_ptr + row * ELTS_PER_ROW + col * VecSize);
329 330 331 332 333 334
      col += THREADS_PER_ROW;
    }
  }
}
#endif

335 336 337 338
template <typename T, typename U, bool ScaleBiasWithSameTypeX>
using LayerNormScaleBiasT =
    typename std::conditional<ScaleBiasWithSameTypeX, T, U>::type;

339 340 341
template <typename T,
          typename U,
          int BlockDim,
342 343 344
          bool ScaleBiasWithSameTypeX = false,
          typename InType = T,
          typename OutType = T>
345
__global__ void LayerNormForward(
346
    const InType *x,
347 348
    const LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *scale,
    const LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *bias,
349
    OutType *y,
350 351 352
    U *mean,
    U *var,
    float epsilon,
353 354 355 356 357 358 359
    int64_t feature_size,
    const float *dequant_out_scale_data = nullptr,
    const int quant_out_scale_offset = 0,
    const float quant_in_scale = 1.0,
    const int quant_round_type = 1,
    const float quant_max_bound = 127.0,
    const float quant_min_bound = -127.0) {
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
  __shared__ U mean_share;
  __shared__ U var_share;
  __shared__ U shared_mean[32];  // threadIdx.x / warpSize <= kMaxBlockDim /
                                 // warpSize <= 1024/32 = 32;
  __shared__ U shared_var[32];

  int64_t beg_idx = blockIdx.x * feature_size + threadIdx.x;
  int64_t end_idx = (blockIdx.x + 1) * feature_size;

  // Step 1: Reduce to calculate mean and var
  U mean_val = 0;
  U var_val = 0;
  for (int64_t i = beg_idx; i < end_idx; i += BlockDim) {
    U tmp = static_cast<U>(x[i]);
    mean_val += tmp;
    var_val += (tmp * tmp);
  }

  mean_val = BlockReduceSum<U>(mean_val, shared_mean);
  var_val = BlockReduceSum<U>(var_val, shared_var);

  if (threadIdx.x == 0) {
    auto scale = static_cast<float>(1.) / static_cast<float>(feature_size);
    auto tmp = mean_val * scale;
    mean[blockIdx.x] = mean_share = static_cast<U>(tmp);
    var_share = static_cast<U>(var_val * scale - mean_share * mean_share);
    var_share = var_share > U(0) ? var_share : U(0);
    var[blockIdx.x] = var_share;
  }
  __syncthreads();

  mean_val = mean_share;
  U invvar = rsqrt_<U>(var_share + static_cast<U>(epsilon));

  // Step 2: Calculate y
  if (scale != nullptr) {
    if (bias != nullptr) {
      for (int64_t i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
        if (std::is_same<OutType, int8_t>::value) {
          y[i] = quant_helper(
              static_cast<T>(static_cast<U>(scale[j]) *
                                 (static_cast<U>(x[i]) - mean_val) * invvar +
                             static_cast<U>(bias[j])),
              quant_in_scale,
              quant_round_type,
              quant_max_bound,
              quant_min_bound);
        } else {
          y[i] = static_cast<OutType>(static_cast<U>(scale[j]) *
                                          (static_cast<U>(x[i]) - mean_val) *
                                          invvar +
                                      static_cast<U>(bias[j]));
        }
414 415 416 417
      }
    } else {
      for (int64_t i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
418 419 420 421 422 423 424 425 426 427 428 429 430
        if (std::is_same<OutType, int8_t>::value) {
          y[i] = quant_helper(
              static_cast<T>(static_cast<U>(scale[j]) *
                             (static_cast<U>(x[i]) - mean_val) * invvar),
              quant_in_scale,
              quant_round_type,
              quant_max_bound,
              quant_min_bound);
        } else {
          y[i] =
              static_cast<OutType>(static_cast<U>(scale[j]) *
                                   (static_cast<U>(x[i]) - mean_val) * invvar);
        }
431 432 433 434 435 436
      }
    }
  } else {  // scale == nullptr
    if (bias != nullptr) {
      for (int64_t i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
437 438 439 440 441 442 443 444 445 446 447 448 449
        if (std::is_same<OutType, int8_t>::value) {
          y[i] = quant_helper(
              static_cast<T>((static_cast<U>(x[i]) - mean_val) * invvar +
                             static_cast<U>(bias[j])),
              quant_in_scale,
              quant_round_type,
              quant_max_bound,
              quant_min_bound);
        } else {
          y[i] =
              static_cast<OutType>((static_cast<U>(x[i]) - mean_val) * invvar +
                                   static_cast<U>(bias[j]));
        }
450 451 452 453
      }
    } else {
      for (int64_t i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
454 455 456 457 458 459 460 461 462 463 464
        if (std::is_same<OutType, int8_t>::value) {
          y[i] = quant_helper(
              static_cast<T>((static_cast<U>(x[i]) - mean_val) * invvar),
              quant_in_scale,
              quant_round_type,
              quant_max_bound,
              quant_min_bound);
        } else {
          y[i] =
              static_cast<OutType>((static_cast<U>(x[i]) - mean_val) * invvar);
        }
465 466 467 468 469 470
      }
    }
  }
}

template <typename T, typename U, int VPT>
471 472 473 474 475 476 477 478 479 480 481 482 483 484
__inline__ __device__ void cuLoadAddStridedInputs(const int64_t i1_block,
                                                  const int thr_load_row_off,
                                                  const int thr_load_col_off,
                                                  const int i2_off,
                                                  const int row_stride,
                                                  U *warp_buf1,
                                                  U *warp_buf2,
                                                  const T *input,
                                                  const T *dout,
                                                  const int64_t i1_end,
                                                  const int64_t n2,
                                                  const U *__restrict__ mean,
                                                  const U *__restrict__ var,
                                                  const float epsilon) {
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
  const int64_t i1 = i1_block + thr_load_row_off;
  if (i1 >= i1_end) return;
  U curr_mean = mean[i1];
  U curr_invvar = rsqrt_<U>(var[i1] + epsilon);
  for (int k = 0; k < VPT; ++k) {
    const int i2 = i2_off + k;
    const int64_t load_idx = i1 * n2 + i2;
    const int write_idx = thr_load_row_off * row_stride + thr_load_col_off + k;
    if (i2 < n2) {
      U curr_input = static_cast<U>(input[load_idx]);
      U curr_dout = static_cast<U>(dout[load_idx]);
      warp_buf1[write_idx] += curr_dout;
      warp_buf2[write_idx] +=
          curr_dout * (curr_input - curr_mean) * curr_invvar;
    }
  }
}

503
#ifdef PADDLE_WITH_CUDA
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
template <bool isFusedDropoutResidualLn,
          typename T,
          typename U,
          typename ScaleT = U,
          typename MaskType = uint8_t,
          int VecSize = 8,
          int WARPS_M = 4,
          int WARPS_N = 1,
          int BYTES_PER_LDG = 16,
          int ELTS_PER_ROW = 1024,
          int THREADS_PER_WARP = 32,
          int THREADS_PER_ROW = WARPS_N *THREADS_PER_WARP,
          int THREADS_PER_CTA = WARPS_M *THREADS_PER_ROW,
          int ROWS_PER_CTA = WARPS_M,
          int ELTS_PER_ROW_PER_CTA = THREADS_PER_ROW *VecSize,
          int LDGS = ELTS_PER_ROW / ELTS_PER_ROW_PER_CTA>
520
__global__ __launch_bounds__(THREADS_PER_CTA) void fused_ln_bwd_fast_kernel(
521 522 523 524 525 526 527 528 529 530 531 532 533
    const int rows,
    float epsilon,
    const T *__restrict__ x_ptr,
    const ScaleT *__restrict__ gamma_ptr,
    const U *__restrict__ mean_ptr,
    const U *__restrict__ var_ptr,
    const T *__restrict__ dout_ptr,
    U *__restrict__ dgamma_temp_ptr,
    U *__restrict__ dbeta_temp_ptr,
    T *__restrict__ dx_ptr,
    const MaskType *mask_ptr = nullptr,
    T factor = static_cast<T>(0),
    T *d_dropout_src_ptr = nullptr) {
534 535 536
  using Vec = phi::AlignedVector<T, VecSize>;
  using Vec_scale = phi::AlignedVector<ScaleT, VecSize>;
  using MaskLoadT = phi::AlignedVector<MaskType, VecSize>;
537 538 539 540 541 542 543 544 545 546 547 548

  const int tidx = threadIdx.x;
  const int bidx = blockIdx.x;
  const int lane = tidx % THREADS_PER_WARP;            // 0, 1, ..., 31
  const int warp = tidx / THREADS_PER_WARP;            // 0, 1, 2, 3
  const int warp_m = warp / WARPS_N;                   // 0, 1, 2, 3
  const int warp_n = warp % WARPS_N;                   // 0
  const int tid_r = warp_n * THREADS_PER_WARP + lane;  // 0, 1, ..., 31

  const int r = bidx * ROWS_PER_CTA + warp_m;
  const int c = warp_n * THREADS_PER_WARP + lane;

549
  static_assert(ELTS_PER_ROW == THREADS_PER_ROW * LDGS * VecSize, "");
550 551

  // smem for column reduction
552
  __shared__ U smem_[ROWS_PER_CTA * ELTS_PER_ROW];
553 554 555 556 557 558 559 560 561 562 563 564 565 566

  U dgamma_sum[LDGS * VecSize];
  U dbeta_sum[LDGS * VecSize];

  memset(dgamma_sum, 0, sizeof(U) * LDGS * VecSize);
  memset(dbeta_sum, 0, sizeof(U) * LDGS * VecSize);

  // Note: it is no use for WARP_N = 1
  __shared__ U smem_sum_loss1[ROWS_PER_CTA * WARPS_N];  // 4
  __shared__ U smem_sum_loss2[ROWS_PER_CTA * WARPS_N];  // 4
  U *sum_loss1_shared = &smem_sum_loss1[warp_m * WARPS_N];
  U *sum_loss2_shared = &smem_sum_loss2[warp_m * WARPS_N];

  // step-1: compute dx and local results of dscale and dbias
567
  constexpr float rn = 1.f / static_cast<float>(ELTS_PER_ROW);
568 569 570 571
  Vec_scale gamma[LDGS];
  int col = c;
#pragma unroll
  for (int it = 0; it < LDGS; it++) {
572
    phi::Load<ScaleT, VecSize>(gamma_ptr + col * VecSize, &gamma[it]);
573 574 575 576 577 578 579 580 581 582 583 584
    col += THREADS_PER_ROW;
  }

#pragma unroll 1
  for (int row = r; row < rows; row += gridDim.x * ROWS_PER_CTA) {
    const U mean_cur_row = mean_ptr[row];
    const U var_cur_row = rsqrt_<U>(var_ptr[row] + epsilon);
    Vec dout[LDGS], x[LDGS];
    MaskLoadT mask_vec[LDGS];
    int col = c;
#pragma unroll
    for (int it = 0; it < LDGS; it++) {
585
      phi::Load<T, VecSize>(dout_ptr + row * ELTS_PER_ROW + col * VecSize,
586
                            &dout[it]);
587
      phi::Load<T, VecSize>(x_ptr + row * ELTS_PER_ROW + col * VecSize, &x[it]);
588
      if (isFusedDropoutResidualLn) {
589
        phi::Load<MaskType, VecSize>(
590
            mask_ptr + row * ELTS_PER_ROW + col * VecSize, &mask_vec[it]);
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
      }

      col += THREADS_PER_ROW;
    }

    // local reductions
    U dy[LDGS * VecSize];
    U y[LDGS * VecSize];

    U sum_loss1 = 0.f;
    U sum_loss2 = 0.f;
#pragma unroll
    for (int it = 0; it < LDGS; it++) {
#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
606
        U x_tmp = static_cast<U>(x[it][jt]);
607 608
        U y_tmp = var_cur_row * (x_tmp - mean_cur_row);
        U dy_tmp = static_cast<U>(gamma[it][jt]) *
609 610
                   static_cast<U>(dout[it][jt]);    // scale * dy
        U dout_tmp = static_cast<U>(dout[it][jt]);  // dy
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683

        // used for get dx (row reduction)
        sum_loss1 += dy_tmp;          // scale * dy, sum_1
        sum_loss2 += dy_tmp * y_tmp;  // scale * dy * y, sum_2

        dy[it * VecSize + jt] = dy_tmp;  // scale * dy
        y[it * VecSize + jt] = y_tmp;    // y

        // used for get dscale and dbias (column reduction)
        dgamma_sum[it * VecSize + jt] += dout_tmp * y_tmp;  // dy * y
        dbeta_sum[it * VecSize + jt] += dout_tmp;           // dy
      }
    }

    // reduction across row for sum_loss1, sum_loss2
    if (WARPS_N == 1) {
#pragma unroll
      // row reduction among 32 threads.
      for (int it = 1; it < THREADS_PER_WARP; it *= 2) {
        sum_loss1 += __shfl_xor_sync(uint32_t(-1), sum_loss1, it);
        sum_loss2 += __shfl_xor_sync(uint32_t(-1), sum_loss2, it);
      }
      sum_loss1 *= rn;
      sum_loss2 *= rn;
    } else {
#pragma unroll
      for (int it = 16; it > 0; it /= 2) {
        sum_loss1 += __shfl_down_sync(uint32_t(-1), sum_loss1, it);
        sum_loss2 += __shfl_down_sync(uint32_t(-1), sum_loss2, it);
      }

      if (lane == 0) {
        sum_loss1_shared[warp_n] = sum_loss1;
        sum_loss2_shared[warp_n] = sum_loss2;
      }

      __syncthreads();
      if (warp_n == 0 && lane == 0) {
        sum_loss1 = 0.f;
        sum_loss2 = 0.f;
        for (int it = 0; it < WARPS_N; it++) {
          sum_loss1 += sum_loss1_shared[it];
          sum_loss2 += sum_loss2_shared[it];
        }
        sum_loss1_shared[0] = sum_loss1;
        sum_loss2_shared[0] = sum_loss2;
      }
      __syncthreads();

      sum_loss1 = sum_loss1_shared[0] * rn;
      sum_loss2 = sum_loss2_shared[0] * rn;
    }

#pragma unroll
    for (int it = 0; it < LDGS; it++) {
#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        U dy_tmp = dy[it * VecSize + jt];  // scale * dy
        U y_tmp = y[it * VecSize + jt];    // y
        // dx = var * (scale * dy - sum_loss2 * y - sum_loss1)
        U dx_tmp = var_cur_row * (dy_tmp - sum_loss2 * y_tmp - sum_loss1);
        // Note: reuse x and dout vec register to store dx and d_dropout_src.
        x[it][jt] = static_cast<T>(dx_tmp);
        if (isFusedDropoutResidualLn) {
          dout[it][jt] = x[it][jt] * static_cast<T>(mask_vec[it][jt]) * factor;
        }
      }
    }

    // store dx to global memory
    col = c;
#pragma unroll
    for (int it = 0; it < LDGS; it++) {
684 685
      phi::Store<T, VecSize>(x[it],
                             dx_ptr + row * ELTS_PER_ROW + col * VecSize);
686
      if (isFusedDropoutResidualLn) {
687
        phi::Store<T, VecSize>(
688
            dout[it], d_dropout_src_ptr + row * ELTS_PER_ROW + col * VecSize);
689 690 691 692 693 694 695
      }
      col += THREADS_PER_ROW;
    }
  }

  // step-2: column reduction of dscale and dbias for each thread block.
  // each block's sum: [4 * 1024] -> [1 * 1024]
696 697
  enum { NUM_RES = ELTS_PER_ROW / THREADS_PER_CTA };  // 1024/128 = 8
  static_assert(NUM_RES * THREADS_PER_CTA == ELTS_PER_ROW, "");
698 699 700

  U *smem_write;

701
  smem_write = &smem_[warp_m * ELTS_PER_ROW + tid_r * VecSize];  // [4 * 1024]
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
#pragma unroll
  for (int it = 0; it < LDGS; it++) {
#pragma unroll
    for (int jt = 0; jt < VecSize; jt++) {
      smem_write[jt] = dbeta_sum[it * VecSize + jt];
    }
    smem_write += THREADS_PER_ROW * VecSize;  // 32*8
  }
  __syncthreads();
  U cta_dbeta_sum[NUM_RES];
  memset(cta_dbeta_sum, 0, sizeof(U) * NUM_RES);
  // column reduction for elems in smem: 4*1024 -> 1*1024.
  for (int it = 0; it < ROWS_PER_CTA; it++) {
    for (int jt = 0; jt < NUM_RES; jt++) {
      cta_dbeta_sum[jt] +=
717
          smem_[it * ELTS_PER_ROW + tidx + jt * THREADS_PER_CTA];
718 719 720 721
    }
  }
  __syncthreads();

722
  smem_write = &smem_[warp_m * ELTS_PER_ROW + tid_r * VecSize];
723 724 725 726 727 728 729 730 731 732 733 734 735 736
#pragma unroll
  for (int it = 0; it < LDGS; it++) {
#pragma unroll
    for (int jt = 0; jt < VecSize; jt++) {
      smem_write[jt] = dgamma_sum[it * VecSize + jt];
    }
    smem_write += THREADS_PER_ROW * VecSize;
  }
  __syncthreads();
  U cta_dgamma_sum[NUM_RES];
  memset(cta_dgamma_sum, 0, sizeof(U) * NUM_RES);
  for (int it = 0; it < ROWS_PER_CTA; it++) {
    for (int jt = 0; jt < NUM_RES; jt++) {
      cta_dgamma_sum[jt] +=
737
          smem_[it * ELTS_PER_ROW + tidx + jt * THREADS_PER_CTA];
738 739 740 741 742
    }
  }

  // the shape of results:(#blocks, 1024)
  U *dgamma_part =
743
      static_cast<U *>(dgamma_temp_ptr) + bidx * ELTS_PER_ROW + tidx;
744 745 746 747 748
  for (int jt = 0; jt < NUM_RES; jt++) {
    *dgamma_part = cta_dgamma_sum[jt];
    dgamma_part += THREADS_PER_CTA;
  }

749
  U *dbeta_part = static_cast<U *>(dbeta_temp_ptr) + bidx * ELTS_PER_ROW + tidx;
750 751 752 753 754 755 756 757 758 759
  for (int jt = 0; jt < NUM_RES; jt++) {
    *dbeta_part = cta_dbeta_sum[jt];
    dbeta_part += THREADS_PER_CTA;
  }
}

/* This function carry out column reduction whose input is [rows, 1024] and
 * output is [1, 1024].
 * #blocks: 32
 * #threads: 512
760
 */
761
// todo(@limin29): to think if there are better impl strategies
762 763 764 765 766 767 768 769 770 771 772 773 774 775
template <typename U,
          typename ScaleT = U,
          int VecSize = 1,
          int WARPS_M = 16,
          int WARPS_N = 1,
          int BYTES_PER_LDG = 4,
          int ELTS_PER_ROW = 1024,
          int THREADS_PER_WARP = 32,
          int THREADS_PER_ROW = WARPS_N *THREADS_PER_WARP,
          int THREADS_PER_CTA = WARPS_M *THREADS_PER_ROW,
          int ROWS_PER_CTA = WARPS_M,
          int ELTS_PER_ROW_PER_CTA = THREADS_PER_ROW *VecSize,
          int LDGS = ELTS_PER_ROW / ELTS_PER_ROW_PER_CTA,
          int VEC_COLS = ELTS_PER_ROW / VecSize>
776
__global__ __launch_bounds__(THREADS_PER_CTA) void ln_bwd_fast_final_kernel(
777 778 779 780 781
    const int rows,
    U *__restrict__ dg_part_,
    U *__restrict__ db_part_,
    ScaleT *__restrict__ dg_,
    ScaleT *__restrict__ db_) {
782
  using Vec = phi::AlignedVector<U, VecSize>;
783
  static_assert(VEC_COLS == ELTS_PER_ROW / VecSize, "");
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798

  const int tidx = threadIdx.x;
  const int bidx = blockIdx.x;
  const int lane = tidx % THREADS_PER_WARP;
  const int warp = tidx / THREADS_PER_WARP;
  const int warp_m = warp / WARPS_N;
  const int warp_n = warp % WARPS_N;
  const int tid_c = warp_n * THREADS_PER_WARP + lane;

  const int c = bidx * THREADS_PER_ROW + tid_c;
  const int r = warp_m;

  __shared__ U smem_space[(WARPS_M - 1) * THREADS_PER_ROW * VecSize];

  for (int col = c; col < VEC_COLS; col += gridDim.x * THREADS_PER_ROW) {
799 800
    const U *dg_part_ptr = (dg_part_) + r * ELTS_PER_ROW + col * VecSize;
    const U *db_part_ptr = (db_part_) + r * ELTS_PER_ROW + col * VecSize;
801 802 803 804 805 806 807 808 809

    U dg_sum[VecSize];
    U db_sum[VecSize];
    memset(dg_sum, 0, sizeof(U) * VecSize);
    memset(db_sum, 0, sizeof(U) * VecSize);
#pragma unroll
    for (int row = r; row < rows; row += ROWS_PER_CTA) {
      Vec dg;
      Vec db;
810 811
      phi::Load<U, VecSize>(dg_part_ptr, &dg);
      phi::Load<U, VecSize>(db_part_ptr, &db);
812 813
      dg_part_ptr += ROWS_PER_CTA * ELTS_PER_ROW;
      db_part_ptr += ROWS_PER_CTA * ELTS_PER_ROW;
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890

#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        dg_sum[jt] += dg[jt];
        db_sum[jt] += db[jt];
      }
    }

    // reduction across rows of the thread block
    U *smem_write;
    smem_write = smem_space + (warp_m - 1) * THREADS_PER_ROW * VecSize + tid_c;

    if (warp_m > 0) {
#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        *smem_write = dg_sum[jt];
        smem_write += THREADS_PER_ROW;
      }
    }
    __syncthreads();

    U *smem_read;
    smem_read = smem_space + tid_c;
    if (warp_m == 0) {
#pragma unroll
      for (int it = 0; it < WARPS_M - 1; it++) {
#pragma unroll
        for (int jt = 0; jt < VecSize; jt++) {
          dg_sum[jt] += *smem_read;
          smem_read += THREADS_PER_ROW;
        }
      }
    }

    __syncthreads();

    smem_write = smem_space + (warp_m - 1) * THREADS_PER_ROW * VecSize + tid_c;

    if (warp_m > 0) {
#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        *smem_write = db_sum[jt];
        smem_write += THREADS_PER_ROW;
      }
    }
    __syncthreads();

    smem_read = smem_space + tid_c;
    if (warp_m == 0) {
#pragma unroll
      for (int it = 0; it < WARPS_M - 1; it++) {
#pragma unroll
        for (int jt = 0; jt < VecSize; jt++) {
          db_sum[jt] += *smem_read;
          smem_read += THREADS_PER_ROW;
        }
      }

      union {
        ScaleT raw;
        ScaleT elt[VecSize];
      } dg_out, db_out;

#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        dg_out.elt[jt] = dg_sum[jt];
        db_out.elt[jt] = db_sum[jt];
      }
      ScaleT *dg_ptr = reinterpret_cast<ScaleT *>(dg_) + col;
      ScaleT *db_ptr = reinterpret_cast<ScaleT *>(db_) + col;
      *dg_ptr = dg_out.raw;
      *db_ptr = db_out.raw;
    }
  }
}

/* This function support two kinds of computations (only for float and fp16
891 892 893 894 895 896 897 898 899 900
 * type):
 *
 * Case-1: compute layer_norm_grad for layernorm op by setting mask_ptr and
 * d_dropout_src_ptr to nullptr. Here, d_x_ptr returns the grad of layernorm
 * input.
 *
 * Case-2: compute layer_norm_grad + residual_grad + dropout_grad for
 * fused_dropout_residual_layernorm op. Here, dx_ptr returns residual_grad.
 *
 */
901 902 903
template <typename T,
          typename U,
          typename ScaleT = U,
904
          typename MaskType = uint8_t>
905 906 907 908 909 910 911 912 913 914 915 916
void ln_bwd_fast_kernel_driver(const phi::GPUContext &dev_ctx,
                               const int rows,
                               const int cols,
                               float epsilon,
                               const T *x_ptr,
                               const ScaleT *scale_ptr,
                               const U *mean_ptr,
                               const U *var_ptr,
                               const T *dout_ptr,
                               T *dx_ptr,
                               ScaleT *dscale_ptr,
                               ScaleT *dbias_ptr,
H
hong 已提交
917 918 919
                               const MaskType *mask_ptr = nullptr,
                               T factor = static_cast<T>(0),
                               T *d_dropout_src_ptr = nullptr) {
920
  auto stream = dev_ctx.stream();
921
  if (cols == 1024 || cols == 384 || cols == 256) {
922
    // step-1: compute dx and reduced part results of dscale and dbias.
923 924
    const int WARPS_M = 4;  // how many rows delt in a cta.
    const int WARPS_N = 1;  // how many warps to deal with a row.
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
    const int BYTES_PER_LDG = 16;
    const int VecSize = BYTES_PER_LDG / sizeof(T);

    const int THREADS_PER_WARP = 32;
    const int THREADS_PER_ROW = WARPS_N * THREADS_PER_WARP;
    const int THREADS_PER_CTA = WARPS_M * THREADS_PER_ROW;
    const int ROWS_PER_CTA = WARPS_M;

    // 4 * 1024 * 4
    const int SMEM_BYTES = ROWS_PER_CTA * cols * sizeof(U);

    // #blocks = 2 * #SM
    const int gridx = 2 * dev_ctx.GetSMCount();

    // get temp space for dscale and dbias.
    framework::Tensor dscale_temp;
    dscale_temp.Resize({gridx, cols});
    dscale_temp.mutable_data<U>(dev_ctx.GetPlace());
    U *dscale_temp_ptr = dscale_temp.data<U>();

    framework::Tensor dbias_temp;
    dbias_temp.Resize({gridx, cols});
    dbias_temp.mutable_data<U>(dev_ctx.GetPlace());
    U *dbias_temp_ptr = dbias_temp.data<U>();

    if (mask_ptr != nullptr) {
      if (d_dropout_src_ptr == nullptr) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "To compute fused_dropout_residual_ln grad, d_dropout_src_ptr "
            "can't be null"));
      }
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
#define LAUNCH_MASK_FUSED_LN_BWD_FAST_KERNEL(vec_size, ele_per_row) \
  fused_ln_bwd_fast_kernel<true,                                    \
                           T,                                       \
                           U,                                       \
                           ScaleT,                                  \
                           MaskType,                                \
                           vec_size,                                \
                           WARPS_M,                                 \
                           WARPS_N,                                 \
                           BYTES_PER_LDG,                           \
                           ele_per_row>                             \
      <<<gridx, THREADS_PER_CTA, 0, stream>>>(rows,                 \
                                              epsilon,              \
                                              x_ptr,                \
                                              scale_ptr,            \
                                              mean_ptr,             \
                                              var_ptr,              \
                                              dout_ptr,             \
                                              dscale_temp_ptr,      \
                                              dbias_temp_ptr,       \
                                              dx_ptr,               \
                                              mask_ptr,             \
                                              factor,               \
                                              d_dropout_src_ptr);
980 981 982 983 984 985 986 987 988 989 990 991 992 993

      if (cols == 1024) {
        LAUNCH_MASK_FUSED_LN_BWD_FAST_KERNEL(VecSize, 1024);
      } else {
        switch (cols) {
          case 384:
            LAUNCH_MASK_FUSED_LN_BWD_FAST_KERNEL(1, 384);
            break;
          case 256:
            LAUNCH_MASK_FUSED_LN_BWD_FAST_KERNEL(VecSize, 256);
            break;
        }
      }
#undef LAUNCH_MASK_FUSED_LN_BWD_FAST_KERNEL
994 995

    } else {
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
#define LAUNCH_FUSED_LN_BWD_FAST_KERNEL(vec_size, ele_per_row) \
  fused_ln_bwd_fast_kernel<false,                              \
                           T,                                  \
                           U,                                  \
                           ScaleT,                             \
                           MaskType,                           \
                           vec_size,                           \
                           WARPS_M,                            \
                           WARPS_N,                            \
                           BYTES_PER_LDG,                      \
                           ele_per_row>                        \
      <<<gridx, THREADS_PER_CTA, 0, stream>>>(rows,            \
                                              epsilon,         \
                                              x_ptr,           \
                                              scale_ptr,       \
                                              mean_ptr,        \
                                              var_ptr,         \
                                              dout_ptr,        \
                                              dscale_temp_ptr, \
                                              dbias_temp_ptr,  \
                                              dx_ptr);
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031

      if (cols == 1024) {
        LAUNCH_FUSED_LN_BWD_FAST_KERNEL(VecSize, 1024);
      } else {
        switch (cols) {
          case 384:
            LAUNCH_FUSED_LN_BWD_FAST_KERNEL(1, 384);
            break;
          case 256:
            LAUNCH_FUSED_LN_BWD_FAST_KERNEL(VecSize, 256);
            break;
        }
      }

#undef LAUNCH_FUSED_LN_BWD_FAST_KERNEL
1032
    }
1033

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
    const int WARPS_M_2 = 16;
    const int WARPS_N_2 = 1;
    const int BYTES_PER_LDG_2 = 4;
    const int VecSize_2 =
        std::max(1, static_cast<int>(BYTES_PER_LDG_2 / sizeof(U)));  // 1

    const int THREADS_PER_WARP_2 = 32;
    const int THREADS_PER_ROW_2 = WARPS_N_2 * THREADS_PER_WARP_2;  // 32
    const int THREADS_PER_CTA_2 =
        WARPS_M_2 * THREADS_PER_ROW_2;     // 16 * 32 = 512
    const int ROWS_PER_CTA_2 = WARPS_M_2;  // 16

    // #blocks: 32,#threads_per_block: 512
    // Note: it is not supported for double type.
    if (sizeof(U) > 4) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only support float and fp16 type"));
    } else {
1052 1053 1054 1055 1056
      int gridx_2 = 0;

#define LAUNCH_LN_BWD_BETA_GAMMMA_KERNEL(vec_size, ele_per_row)         \
  gridx_2 = static_cast<int>(std::ceil(                                 \
      ele_per_row / static_cast<float>(THREADS_PER_ROW_2 * vec_size))); \
1057 1058 1059 1060 1061 1062 1063
  ln_bwd_fast_final_kernel<U,                                           \
                           ScaleT,                                      \
                           vec_size,                                    \
                           WARPS_M_2,                                   \
                           WARPS_N_2,                                   \
                           BYTES_PER_LDG_2,                             \
                           ele_per_row>                                 \
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
      <<<gridx_2, THREADS_PER_CTA_2, 0, stream>>>(                      \
          gridx, dscale_temp_ptr, dbias_temp_ptr, dscale_ptr, dbias_ptr);

      if (cols == 1024) {
        LAUNCH_LN_BWD_BETA_GAMMMA_KERNEL(VecSize_2, 1024);
      } else {
        switch (cols) {
          case 384:
            LAUNCH_LN_BWD_BETA_GAMMMA_KERNEL(1, 384);
            break;
          case 256:
            LAUNCH_LN_BWD_BETA_GAMMMA_KERNEL(VecSize_2, 256);
            break;
        }
      }

#undef LAUNCH_LN_BWD_BETA_GAMMMA_KERNEL
1081 1082 1083 1084 1085 1086 1087 1088
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Fast layer_norm kernel is only used when feature_size is 1024"));
  }
}
#endif

1089
template <typename T, typename U, int BDIMX, int BDIMY, int VPTX>
1090 1091 1092 1093 1094 1095 1096 1097 1098
__global__ void LayerNormBackwardPartGradGammaBeta(const T *__restrict__ dout,
                                                   const T *__restrict__ input,
                                                   const int64_t n1,
                                                   const int64_t n2,
                                                   const U *__restrict__ mean,
                                                   const U *__restrict__ var,
                                                   float epsilon,
                                                   U *part_grad_gamma,
                                                   U *part_grad_beta) {
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
  // VPTX -> value per thread.x, BDIMX -> blockDim.x, BDIMY -> blockDim.y, BDIMX
  // -> blockDim.x
  // template for compile time optimizations

  constexpr int row_stride = BDIMX + 1;
  const int thr_load_col_off = (threadIdx.x * VPTX) & (BDIMX - 1);
  const int thr_load_row_off =
      (threadIdx.x * VPTX) / BDIMX + threadIdx.y * BDIMY;
  const int i2_off = blockIdx.x * BDIMX + thr_load_col_off;

  constexpr int shared_cap = (BDIMX * BDIMY > 2 * VPTX * BDIMY * row_stride)
                                 ? BDIMX * BDIMY
                                 : 2 * VPTX * BDIMY * row_stride;
  __shared__ U buf[shared_cap];

  U *warp_buf1 = reinterpret_cast<U *>(buf);
  U *warp_buf2 = warp_buf1 + VPTX * BDIMY * row_stride;

  for (int idx = threadIdx.y * blockDim.x + threadIdx.x;
1118 1119
       idx < 2 * VPTX * BDIMY * row_stride;
       idx += BDIMX * BDIMY) {
1120 1121 1122 1123 1124 1125
    buf[idx] = U(0);
  }
  __syncthreads();

  for (int64_t i1_block = blockIdx.y * BDIMY * VPTX; i1_block < n1;
       i1_block += VPTX * BDIMY * gridDim.y) {
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
    cuLoadAddStridedInputs<T, U, VPTX>(i1_block,
                                       thr_load_row_off,
                                       thr_load_col_off,
                                       i2_off,
                                       row_stride,
                                       warp_buf1,
                                       warp_buf2,
                                       input,
                                       dout,
                                       n1,
                                       n2,
                                       mean,
                                       var,
                                       epsilon);
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
  }
  __syncthreads();

  // inter-warp reductions
  // sum within each warp
  U acc1 = U(0);
  U acc2 = U(0);
  for (int k = 0; k < VPTX; ++k) {
    int row1 = threadIdx.y + k * VPTX;
    int idx1 = row1 * row_stride + threadIdx.x;
    acc1 += warp_buf1[idx1];
    acc2 += warp_buf2[idx1];
  }
  warp_buf1[threadIdx.y * row_stride + threadIdx.x] = acc1;
  warp_buf2[threadIdx.y * row_stride + threadIdx.x] = acc2;
  __syncthreads();
  // sum all warps
  for (int offset = VPTX >> 1; offset > 1; offset >>= 1) {
    if (threadIdx.y < offset) {
      int row1 = threadIdx.y;
      int row2 = threadIdx.y + offset;
      int idx1 = row1 * row_stride + threadIdx.x;
      int idx2 = row2 * row_stride + threadIdx.x;
      warp_buf1[idx1] += warp_buf1[idx2];
      warp_buf2[idx1] += warp_buf2[idx2];
    }
    __syncthreads();
  }
  int64_t i2 = blockIdx.x * blockDim.x + threadIdx.x;
  if (threadIdx.y == 0 && i2 < n2) {
    int row1 = threadIdx.y;
    int row2 = threadIdx.y + 1;
    int idx1 = row1 * row_stride + threadIdx.x;
    int idx2 = row2 * row_stride + threadIdx.x;
    part_grad_beta[blockIdx.y * n2 + i2] = warp_buf1[idx1] + warp_buf1[idx2];
    part_grad_gamma[blockIdx.y * n2 + i2] = warp_buf2[idx1] + warp_buf2[idx2];
  }
}

1179
template <typename T, typename U, int BDIMX, int BDIMY, bool ScaleBiasSameTypeX>
1180
__global__ void LayerNormBackwardSumGradGammaBeta(
1181 1182 1183
    const U *part_grad_gamma,
    const U *part_grad_beta,
    const int part_size,
1184
    // const int n1, const int n2, T* grad_gamma, T* grad_beta) {
1185 1186
    const int n1,
    const int n2,
1187 1188
    LayerNormScaleBiasT<T, U, ScaleBiasSameTypeX> *grad_gamma,
    LayerNormScaleBiasT<T, U, ScaleBiasSameTypeX> *grad_beta) {
1189
  // sum partial gradients for gamma and beta
1190
  using ScaleBiasT = LayerNormScaleBiasT<T, U, ScaleBiasSameTypeX>;
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
  __shared__ U buf[BDIMX * BDIMY];
  int64_t i2 = blockIdx.x * BDIMX + threadIdx.x;
  if (i2 < n2) {
    // each warp does sequential reductions until reduced part_size is num_warps
    int num_warp_reductions = part_size / BDIMY;
    U sum_gamma = U(0);
    U sum_beta = U(0);
    const U *part_grad_gamma_ptr =
        part_grad_gamma + threadIdx.y * num_warp_reductions * n2 + i2;
    const U *part_grad_beta_ptr =
        part_grad_beta + threadIdx.y * num_warp_reductions * n2 + i2;
    for (int warp_offset = 0; warp_offset < num_warp_reductions;
         ++warp_offset) {
      sum_gamma += part_grad_gamma_ptr[warp_offset * n2];
      sum_beta += part_grad_beta_ptr[warp_offset * n2];
    }
    // inter-warp reductions
    constexpr int nbsize3 = BDIMX * BDIMY / 2;
    for (int offset = BDIMY / 2; offset >= 1; offset /= 2) {
      // top half write to shared memory
      if (threadIdx.y >= offset && threadIdx.y < 2 * offset) {
        const int write_idx = (threadIdx.y - offset) * blockDim.x + threadIdx.x;
        buf[write_idx] = sum_gamma;
        buf[write_idx + nbsize3] = sum_beta;
      }
      __syncthreads();
      // bottom half sums
      if (threadIdx.y < offset) {
        const int read_idx = threadIdx.y * BDIMX + threadIdx.x;
        sum_gamma += buf[read_idx];
        sum_beta += buf[read_idx + nbsize3];
      }
      __syncthreads();
    }
    // write out fully summed gradients
    if (threadIdx.y == 0) {
1227 1228
      grad_gamma[i2] = static_cast<ScaleBiasT>(sum_gamma);
      grad_beta[i2] = static_cast<ScaleBiasT>(sum_beta);
1229 1230 1231 1232
    }
  }
}

1233
template <typename T, typename U, int BDIMX, int BDIMY, bool ScaleBiasSameTypeX>
1234
__global__ void LayerNormBackwardComputeGradInput(
1235 1236 1237 1238 1239 1240
    const T *__restrict__ dout,
    const T *__restrict__ input,
    const int n1,
    const int n2,
    const U *__restrict__ mean,
    const U *__restrict__ var,
1241
    const float epsilon,
1242 1243
    const LayerNormScaleBiasT<T, U, ScaleBiasSameTypeX> *gamma,
    T *grad_input) {
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
#ifdef __HIPCC__
  for (auto i1 = hipBlockIdx_x; i1 < n1; i1 += hipGridDim_x) {
#else
  for (auto i1 = blockIdx.x; i1 < n1; i1 += gridDim.x) {
#endif
    U sum_loss1 = U(0);
    U sum_loss2 = U(0);
    const U c_mean = mean[i1];
    const U c_invvar = rsqrt_<U>(var[i1] + epsilon);
    const T *k_input = input + i1 * n2;
    const T *k_dout = dout + i1 * n2;
    constexpr int numx = BDIMX * BDIMY;
    const int thrx = threadIdx.x + threadIdx.y * BDIMX;
    if (gamma != NULL) {
      int l = 4 * thrx;
      for (; l + 3 < n2; l += 4 * numx) {
        for (int k = 0; k < 4; ++k) {
          const U c_h = static_cast<U>(k_input[l + k]);
          const U c_loss = static_cast<U>(k_dout[l + k]);
1263 1264 1265
          sum_loss1 += c_loss * static_cast<U>(gamma[l + k]);
          sum_loss2 +=
              c_loss * static_cast<U>(gamma[l + k]) * (c_h - c_mean) * c_invvar;
1266 1267 1268 1269 1270
        }
      }
      for (; l < n2; ++l) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
1271 1272 1273
        sum_loss1 += c_loss * static_cast<U>(gamma[l]);
        sum_loss2 +=
            c_loss * static_cast<U>(gamma[l]) * (c_h - c_mean) * c_invvar;
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
      }
    } else {
      int l = 4 * thrx;
      for (; l + 3 < n2; l += 4 * numx) {
        for (int k = 0; k < 4; ++k) {
          const U c_h = static_cast<U>(k_input[l + k]);
          const U c_loss = static_cast<U>(k_dout[l + k]);
          sum_loss1 += c_loss;
          sum_loss2 += c_loss * (c_h - c_mean) * c_invvar;
        }
      }
      for (; l < n2; ++l) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
        sum_loss1 += c_loss;
        sum_loss2 += c_loss * (c_h - c_mean) * c_invvar;
      }
    }
    // intra-warp reductions
    for (int mask = BDIMX / 2; mask > 0; mask /= 2) {
#ifdef PADDLE_WITH_HIP
1295 1296
      sum_loss1 += __shfl_xor(sum_loss1,
                              mask,
1297
                              warpSize);  // WARP_SHFL_XOR(sum_loss1, mask);
1298 1299
      sum_loss2 += __shfl_xor(sum_loss2,
                              mask,
1300 1301 1302
                              warpSize);  // WARP_SHFL_XOR(sum_loss2, mask);
#else
      sum_loss1 +=
1303 1304 1305
          __shfl_xor_sync(0xffffffff,
                          sum_loss1,
                          mask,
1306 1307
                          warpSize);  // WARP_SHFL_XOR(sum_loss1, mask);
      sum_loss2 +=
1308 1309 1310
          __shfl_xor_sync(0xffffffff,
                          sum_loss2,
                          mask,
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
                          warpSize);  // WARP_SHFL_XOR(sum_loss2, mask);
#endif
    }
    // inter-warp reductions
    if (BDIMY > 1) {
      __shared__ U buf[BDIMX * BDIMY];
      for (int offset = BDIMY / 2; offset > 0; offset /= 2) {
        // upper half of warps write to shared
        if (threadIdx.y >= offset && threadIdx.y < 2 * offset) {
          const int wrt_i = (threadIdx.y - offset) * BDIMX + threadIdx.x;
          buf[2 * wrt_i] = sum_loss1;
          buf[2 * wrt_i + 1] = sum_loss2;
        }
        __syncthreads();
        // lower half merges
        if (threadIdx.y < offset) {
          const int read_i = threadIdx.y * blockDim.x + threadIdx.x;
          sum_loss1 += buf[2 * read_i];
          sum_loss2 += buf[2 * read_i + 1];
        }
        __syncthreads();
      }
      if (threadIdx.y == 0) {
        buf[2 * threadIdx.x] = sum_loss1;
        buf[2 * threadIdx.x + 1] = sum_loss2;
      }
      __syncthreads();
      if (threadIdx.y != 0) {
        sum_loss1 = buf[2 * threadIdx.x];
        sum_loss2 = buf[2 * threadIdx.x + 1];
      }
    }
    // all threads now have the two sums over l
    U fH = (U)n2;
    U term1 = (U(1) / fH) * c_invvar;
    T *k_grad_input = grad_input + i1 * n2;
    if (gamma != NULL) {
      for (int l = thrx; l < n2; l += numx) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
1351
        U f_grad_input = fH * c_loss * static_cast<U>(gamma[l]);
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
        f_grad_input -= sum_loss1;
        f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2;
        f_grad_input *= term1;
        k_grad_input[l] = static_cast<T>(f_grad_input);
      }
    } else {
      for (int l = thrx; l < n2; l += numx) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
        U f_grad_input = fH * c_loss;
        f_grad_input -= sum_loss1;
        f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2;
        f_grad_input *= term1;
        k_grad_input[l] = static_cast<T>(f_grad_input);
      }
    }
  }
}

// Make sure that d_scale != nullptr && d_bias != nullptr
// Since d_scale != nullptr, scale would not be nullptr
1373 1374 1375 1376
template <typename T,
          typename U,
          int BlockDim,
          bool HasDx,
1377
          bool ScaleBiasWithSameTypeX>
1378
__global__ void LayerNormBackwardGradientAll(
1379 1380
    const T *x,
    const T *d_y,
1381
    LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *d_scale,
1382 1383 1384 1385
    LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *d_bias,
    T *d_x,
    const U *mean,
    const U *var,
1386
    const LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *scale,
1387 1388 1389
    float epsilon,
    int64_t batch_size,
    int64_t feature_size,
1390 1391
    int64_t col_offset) {
  using ScaleBiasT = LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX>;
1392 1393 1394 1395 1396 1397 1398 1399
  int64_t beg_idx = threadIdx.x * feature_size + (blockIdx.x + col_offset);
  int64_t end_idx = batch_size * feature_size + (blockIdx.x + col_offset);
  int64_t stride = BlockDim * feature_size;

  U d_scale_partial = static_cast<U>(0), d_bias_partial = static_cast<U>(0);

  for (int64_t i = beg_idx; i < end_idx; i += stride) {
    int row_idx = i / feature_size;
1400
    auto var_val = rsqrt_(static_cast<U>(var[row_idx]) + epsilon);
1401
    d_scale_partial += static_cast<U>(d_y[i]) *
1402
                       (static_cast<U>(x[i]) - mean[row_idx]) * var_val;
1403 1404 1405
    d_bias_partial += static_cast<U>(d_y[i]);
    if (HasDx) {
      d_x[i] = static_cast<T>(static_cast<U>(d_y[i]) *
1406
                              static_cast<U>(scale[blockIdx.x + col_offset]) *
1407
                              var_val);
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
    }
  }

  __shared__ U shared_scale[32];  // threadIdx.x / warpSize <= kMaxBlockDim /
                                  // warpSize <= 1024/32 = 32;
  __shared__ U shared_bias[32];
  d_scale_partial = BlockReduceSum<U>(d_scale_partial, shared_scale);
  d_bias_partial = BlockReduceSum<U>(d_bias_partial, shared_bias);

  if (threadIdx.x == 0) {
1418 1419
    d_scale[blockIdx.x + col_offset] = static_cast<ScaleBiasT>(d_scale_partial);
    d_bias[blockIdx.x + col_offset] = static_cast<ScaleBiasT>(d_bias_partial);
1420 1421 1422 1423 1424 1425
  }
}

// Make sure that there is only one true expression: d_scale != nullptr
// or d_bias != nullptr
// Notice: scale may be nullptr
1426 1427 1428 1429 1430
template <typename T,
          typename U,
          int BlockDim,
          bool HasDx,
          bool HasDScale,
1431
          bool ScaleBiasWithSameTypeX>
1432
__global__ void LayerNormBackwardGradientScaleOrBias(
1433 1434
    const T *x,
    const T *d_y,
1435
    LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *d_scale,
1436 1437 1438 1439
    LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *d_bias,
    T *d_x,
    const U *mean,
    const U *var,
1440
    const LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *scale,
1441 1442 1443 1444
    float epsilon,
    int64_t batch_size,
    int64_t feature_size,
    int col_offset) {
1445
  using ScaleBiasT = LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX>;
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
  using BlockReduce = cub::BlockReduce<U, BlockDim>;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  int64_t beg_idx = threadIdx.x * feature_size + blockIdx.x + col_offset;
  int64_t end_idx = batch_size * feature_size + blockIdx.x + col_offset;
  int stride = BlockDim * feature_size;
  U d_scale_or_d_bias_partial = static_cast<U>(0);

  for (int64_t i = beg_idx; i < end_idx; i += stride) {
    int row_idx = i / feature_size;
    auto var_val =
1456
        static_cast<U>(rsqrt_(static_cast<float>(var[row_idx]) + epsilon));
1457 1458
    if (HasDScale) {
      d_scale_or_d_bias_partial += static_cast<U>(d_y[i]) *
1459
                                   (static_cast<U>(x[i]) - mean[row_idx]) *
1460 1461 1462 1463 1464 1465 1466 1467
                                   var_val;
    } else {  // d_bias != nullptr
      d_scale_or_d_bias_partial += static_cast<U>(d_y[i]);
    }

    if (HasDx) {
      if (scale != nullptr) {
        d_x[i] = static_cast<T>(static_cast<U>(d_y[i]) *
1468
                                static_cast<U>(scale[blockIdx.x + col_offset]) *
1469
                                var_val);
1470
      } else {
1471
        d_x[i] = static_cast<T>(static_cast<U>(d_y[i]) * var_val);
1472 1473 1474 1475 1476 1477 1478 1479 1480
      }
    }
  }

  d_scale_or_d_bias_partial =
      BlockReduce(temp_storage).Reduce(d_scale_or_d_bias_partial, cub::Sum());

  if (threadIdx.x == 0) {
    if (HasDScale) {
1481 1482
      d_scale[blockIdx.x + col_offset] =
          static_cast<ScaleBiasT>(d_scale_or_d_bias_partial);
1483
    } else {
1484 1485
      d_bias[blockIdx.x + col_offset] =
          static_cast<ScaleBiasT>(d_scale_or_d_bias_partial);
1486 1487 1488 1489 1490 1491
    }
  }
}

template <typename T, typename U, int BlockDim>
__global__ void LayerNormBackwardPostProcessToCalculateDX(
1492 1493 1494 1495 1496
    const T *x,
    T *d_x,
    const U *mean,
    const U *var,
    float epsilon,
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
    int64_t feature_size) {
  using BlockReduce = cub::BlockReduce<PairForLayerNorm<U>, BlockDim>;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  __shared__ U d_x_reduce_tmp[2];

  int64_t beg_idx = blockIdx.x * feature_size + threadIdx.x;
  int64_t end_idx = (blockIdx.x + 1) * feature_size;

  U block_mean = mean[blockIdx.x];
  U block_var = var[blockIdx.x];
  U d_x_mean_partial = static_cast<U>(0), d_x_var_partial = static_cast<U>(0);
  for (int64_t i = beg_idx; i < end_idx; i += BlockDim) {
    d_x_mean_partial += static_cast<U>(d_x[i]);
    d_x_var_partial +=
        static_cast<U>(d_x[i]) * (static_cast<U>(x[i]) - block_mean);
  }

  auto pair =
      BlockReduce(temp_storage)
          .Reduce(PairForLayerNorm<U>(d_x_mean_partial, d_x_var_partial),
                  PairForLayerNormAddFunctor<U>());

  if (threadIdx.x == 0) {
    d_x_reduce_tmp[0] = static_cast<float>(pair.first_) / feature_size;
    d_x_reduce_tmp[1] =
        static_cast<float>(pair.second_) /
        (feature_size * (static_cast<float>(block_var) + epsilon));
  }
  __syncthreads();

  d_x_mean_partial = d_x_reduce_tmp[0];
  d_x_var_partial = d_x_reduce_tmp[1];
  for (int64_t i = beg_idx; i < end_idx; i += BlockDim) {
    d_x[i] -= static_cast<T>(d_x_mean_partial);
    d_x[i] -=
        static_cast<T>((static_cast<U>(x[i]) - block_mean) * d_x_var_partial);
  }
}

// Here, we only calculate d_x
1537 1538
template <typename T, typename U, int BlockDim, bool ScaleBiasWithSameTypeX>
__global__ void LayerNormBackwardGradientOnlyDX(
1539 1540 1541 1542 1543
    const T *x,
    const T *d_y,
    T *d_x,
    const U *mean,
    const U *var,
1544
    const LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *scale,
1545 1546
    float epsilon,
    int64_t feature_size) {
1547
  using ScaleBiasT = LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX>;
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
  using BlockReduce = cub::BlockReduce<PairForLayerNorm<U>, BlockDim>;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  __shared__ U d_x_reduce_tmp[2];

  int64_t beg_idx = blockIdx.x * feature_size + threadIdx.x;
  int64_t end_idx = (blockIdx.x + 1) * feature_size;

  U block_mean = mean[blockIdx.x], block_var = var[blockIdx.x];
  U d_x_mean_partial = static_cast<U>(0), d_x_var_partial = static_cast<U>(0);
  for (int64_t i = beg_idx; i < end_idx; i += BlockDim) {
    auto var_val =
1559
        static_cast<U>(rsqrt_(static_cast<float>(block_var) + epsilon));
1560 1561
    if (scale != nullptr) {
      int col_idx = i % feature_size;
1562
      d_x[i] = static_cast<T>(static_cast<U>(d_y[i]) *
1563
                              static_cast<U>(scale[col_idx]) * var_val);
1564
    } else {
1565
      d_x[i] = static_cast<T>(static_cast<U>(d_y[i]) * var_val);
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
    }
    d_x_mean_partial += static_cast<U>(d_x[i]);
    d_x_var_partial +=
        static_cast<U>(d_x[i]) * (static_cast<U>(x[i]) - block_mean);
  }

  auto pair =
      BlockReduce(temp_storage)
          .Reduce(PairForLayerNorm<U>(d_x_mean_partial, d_x_var_partial),
                  PairForLayerNormAddFunctor<U>());

  if (threadIdx.x == 0) {
    d_x_reduce_tmp[0] = static_cast<float>(pair.first_) / feature_size;
    d_x_reduce_tmp[1] =
        static_cast<float>(pair.second_) /
        (feature_size * (static_cast<float>(block_var) + epsilon));
  }
  __syncthreads();

  d_x_mean_partial = d_x_reduce_tmp[0];
  d_x_var_partial = d_x_reduce_tmp[1];
  for (int64_t i = beg_idx; i < end_idx; i += BlockDim) {
    d_x[i] -= static_cast<T>(d_x_mean_partial);
    d_x[i] -=
        static_cast<T>((static_cast<U>(x[i]) - block_mean) * d_x_var_partial);
  }
}

1594
template <typename T, typename U, bool ScaleBiasWithSameTypeX>
1595
__global__ void LayerNormBackwardWhenBatchSizeIsOne(
1596 1597 1598
    const T *x,
    const T *d_y,
    T *d_x,
1599
    LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *d_scale,
1600 1601
    LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *d_bias,
    const U *mean,
1602 1603
    const U *var,
    const LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *scale,
1604 1605
    float epsilon,
    int64_t feature_size) {
1606
  int64_t idx = threadIdx.x + blockIdx.x * blockDim.x;
1607
  using ScaleBiasT = LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX>;
1608
  if (idx < feature_size) {
1609
    auto var_val = static_cast<U>(rsqrt_(static_cast<float>(var[0]) + epsilon));
1610 1611
    if (d_x != nullptr) {
      if (d_scale == nullptr) {
1612
        d_x[idx] = static_cast<T>(static_cast<U>(d_y[idx]) * var_val);
1613
      } else {
1614
        d_x[idx] = static_cast<T>(static_cast<U>(d_y[idx]) *
1615
                                  static_cast<U>(scale[idx]) * var_val);
1616 1617 1618 1619
      }
    }

    if (d_scale != nullptr) {
1620 1621
      d_scale[idx] =
          static_cast<ScaleBiasT>(static_cast<U>(d_y[idx]) *
1622
                                  (static_cast<U>(x[idx]) - mean[0]) * var_val);
1623 1624
    }

1625 1626 1627
    if (d_bias != nullptr) {
      d_bias[idx] = static_cast<ScaleBiasT>(d_y[idx]);
    }
1628 1629 1630
  }
}

1631 1632
template <typename T, typename U, bool ScaleBiasWithSameTypeX = false>
static void LayerNormBackward(
1633 1634
    const T *x,
    const T *d_y,
1635
    const LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *scale,
1636 1637 1638
    const U *mean,
    const U *var,
    T *d_x,
1639
    LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *d_scale,
1640 1641 1642 1643 1644
    LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *d_bias,
    float epsilon,
    int64_t batch_size,
    int64_t feature_size,
    const phi::GPUContext &dev_ctx) {
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
  auto stream = dev_ctx.stream();
#ifdef __HIPCC__
  const int kMaxBlockDim = 256;
#else
  const int kMaxBlockDim = 512;
#endif
  const int kMaxBlockNum = 128;
  int gradient_flag = ((d_x != nullptr ? 1 : 0) << 2) |
                      ((d_scale != nullptr ? 1 : 0) << 1) |
                      ((d_bias != nullptr ? 1 : 0));
  if (gradient_flag == 0) return;

  if (batch_size == 1) {
1658
    LayerNormBackwardWhenBatchSizeIsOne<T, U, ScaleBiasWithSameTypeX>
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
        <<<(feature_size + kMaxBlockDim - 1) / kMaxBlockDim,
           kMaxBlockDim,
           0,
           stream>>>(x,
                     d_y,
                     d_x,
                     d_scale,
                     d_bias,
                     mean,
                     var,
                     scale,
                     epsilon,
1671
                     feature_size);
1672 1673 1674

    if (d_x != nullptr) {
      switch (GetDesiredBlockDim(feature_size)) {
1675 1676
        FIXED_BLOCK_DIM_CASE(
            LayerNormBackwardPostProcessToCalculateDX<T, U, kBlockDim>
1677 1678
            <<<1, kBlockDim, 0, stream>>>(
                x, d_x, mean, var, epsilon, feature_size));
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
      }
    }
    return;
  }

  auto block_dim = GetDesiredBlockDim(batch_size);
  switch (gradient_flag) {
    case 1:  // d_x == nulptr, d_scale == nullptr, d_bias != nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
1689 1690 1691 1692 1693 1694 1695
            feature_size,
            kMaxBlockNum,
            LayerNormBackwardGradientScaleOrBias<T,
                                                 U,
                                                 kBlockDim,
                                                 false,
                                                 false,
1696
                                                 ScaleBiasWithSameTypeX>
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
            <<<block_num, kBlockDim, 0, stream>>>(x,
                                                  d_y,
                                                  d_scale,
                                                  d_bias,
                                                  d_x,
                                                  mean,
                                                  var,
                                                  scale,
                                                  epsilon,
                                                  batch_size,
                                                  feature_size,
                                                  col_offset));
1709 1710 1711 1712 1713
      }
      break;
    case 2:  // d_x == nullptr, d_scale != nullptr, d_bias == nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
1714 1715 1716 1717 1718 1719 1720
            feature_size,
            kMaxBlockNum,
            LayerNormBackwardGradientScaleOrBias<T,
                                                 U,
                                                 kBlockDim,
                                                 false,
                                                 true,
1721
                                                 ScaleBiasWithSameTypeX>
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
            <<<block_num, kBlockDim, 0, stream>>>(x,
                                                  d_y,
                                                  d_scale,
                                                  d_bias,
                                                  d_x,
                                                  mean,
                                                  var,
                                                  scale,
                                                  epsilon,
                                                  batch_size,
                                                  feature_size,
                                                  col_offset));
1734 1735 1736 1737 1738
      }
      break;
    case 3:  // d_x == nullptr, d_scale != nulptr, d_bias != nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
1739 1740 1741 1742 1743 1744
            feature_size,
            kMaxBlockNum,
            LayerNormBackwardGradientAll<T,
                                         U,
                                         kBlockDim,
                                         false,
1745
                                         ScaleBiasWithSameTypeX>
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
            <<<block_num, kBlockDim, 0, stream>>>(x,
                                                  d_y,
                                                  d_scale,
                                                  d_bias,
                                                  d_x,
                                                  mean,
                                                  var,
                                                  scale,
                                                  epsilon,
                                                  batch_size,
                                                  feature_size,
                                                  col_offset));
1758 1759 1760 1761 1762
      }
      break;
    case 4:  // d_x != nullptr, d_scale == nullptr, d_bias == nullptr
      switch (GetDesiredBlockDim(feature_size)) {
        FIXED_BLOCK_DIM_CASE(
1763 1764 1765
            LayerNormBackwardGradientOnlyDX<T,
                                            U,
                                            kBlockDim,
1766 1767
                                            ScaleBiasWithSameTypeX>
            <<<batch_size, kBlockDim, 0, stream>>>(
1768 1769 1770 1771 1772 1773
                x, d_y, d_x, mean, var, scale, epsilon, feature_size));
      }
      break;
    case 5:  // d_x != nulptr, d_scale == nullptr, d_bias != nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
1774 1775 1776 1777 1778 1779 1780
            feature_size,
            kMaxBlockNum,
            LayerNormBackwardGradientScaleOrBias<T,
                                                 U,
                                                 kBlockDim,
                                                 true,
                                                 false,
1781
                                                 ScaleBiasWithSameTypeX>
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
            <<<block_num, kBlockDim, 0, stream>>>(x,
                                                  d_y,
                                                  d_scale,
                                                  d_bias,
                                                  d_x,
                                                  mean,
                                                  var,
                                                  scale,
                                                  epsilon,
                                                  batch_size,
                                                  feature_size,
                                                  col_offset));
1794 1795 1796
      }
      switch (GetDesiredBlockDim(feature_size)) {
        FIXED_BLOCK_DIM_CASE(
1797
            LayerNormBackwardPostProcessToCalculateDX<T, U, kBlockDim>
1798 1799
            <<<batch_size, kBlockDim, 0, stream>>>(
                x, d_x, mean, var, epsilon, feature_size));
1800 1801 1802 1803 1804
      }
      break;
    case 6:  // d_x != nullptr, d_scale != nullptr, d_bias == nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
1805 1806 1807 1808 1809 1810 1811
            feature_size,
            kMaxBlockNum,
            LayerNormBackwardGradientScaleOrBias<T,
                                                 U,
                                                 kBlockDim,
                                                 true,
                                                 true,
1812
                                                 ScaleBiasWithSameTypeX>
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
            <<<block_num, kBlockDim, 0, stream>>>(x,
                                                  d_y,
                                                  d_scale,
                                                  d_bias,
                                                  d_x,
                                                  mean,
                                                  var,
                                                  scale,
                                                  epsilon,
                                                  batch_size,
                                                  feature_size,
                                                  col_offset));
1825 1826 1827
      }
      switch (GetDesiredBlockDim(feature_size)) {
        FIXED_BLOCK_DIM_CASE(
1828
            LayerNormBackwardPostProcessToCalculateDX<T, U, kBlockDim>
1829 1830
            <<<batch_size, kBlockDim, 0, stream>>>(
                x, d_x, mean, var, epsilon, feature_size));
1831 1832 1833 1834
      }
      break;
    case 7:  // d_x != nullptr, d_scale != nullptr, d_bias != nullptr
    {
1835
#ifdef PADDLE_WITH_CUDA
1836
      bool can_call_fast_kernel = false;
1837
      // todo: rule out double type.
1838 1839 1840 1841
      if ((feature_size == 1024 || feature_size == 384 ||
           feature_size == 256) &&
          sizeof(T) <= 4) {
        can_call_fast_kernel = true;
1842 1843
      }

1844 1845 1846
      VLOG(6) << "can_call_fast_kernel = " << can_call_fast_kernel;
      if (can_call_fast_kernel) {
        ln_bwd_fast_kernel_driver<
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
            T,
            U,
            LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX>>(dev_ctx,
                                                               batch_size,
                                                               feature_size,
                                                               epsilon,
                                                               x,
                                                               scale,
                                                               mean,
                                                               var,
                                                               d_y,
                                                               d_x,
                                                               d_scale,
                                                               d_bias);
1861 1862 1863 1864 1865 1866 1867 1868 1869
      } else {
#endif
        constexpr int VPT = 4;
        constexpr int BDIMX2 = 32;
        constexpr int BDIMY2 = 4;
        dim3 threads2(BDIMX2, BDIMY2, 1);
        constexpr int part_size = BDIMY2 * VPT;
        const dim3 blocks2((feature_size + BDIMX2 - 1) / BDIMX2, part_size, 1);

1870 1871 1872 1873 1874 1875 1876 1877
        auto part_grad_gamma_ptr = memory::Alloc(
            dev_ctx.GetPlace(),
            part_size * feature_size * sizeof(U),
            phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));
        auto part_grad_beta_ptr = memory::Alloc(
            dev_ctx.GetPlace(),
            part_size * feature_size * sizeof(U),
            phi::Stream(reinterpret_cast<phi::StreamId>(dev_ctx.stream())));
1878 1879 1880
        U *part_grad_gamma = reinterpret_cast<U *>(part_grad_gamma_ptr->ptr());
        U *part_grad_beta = reinterpret_cast<U *>(part_grad_beta_ptr->ptr());

1881 1882
        LayerNormBackwardPartGradGammaBeta<T, U, BDIMX2, BDIMY2, VPT>
            <<<blocks2, threads2, 0, stream>>>(
1883 1884 1885 1886 1887 1888 1889
                d_y,
                x,
                batch_size,
                feature_size,
                mean,
                var,
                epsilon,
1890 1891
                part_grad_gamma,
                part_grad_beta);  // compute part_grad_gamma, beta
1892 1893 1894 1895 1896

        constexpr int BDIMX3 = 32;
        constexpr int BDIMY3 = 8;
        dim3 threads3(BDIMX3, BDIMY3, 1);
        const dim3 blocks3((feature_size + BDIMX2 - 1) / BDIMX2, 1, 1);
1897 1898 1899 1900
        LayerNormBackwardSumGradGammaBeta<T,
                                          U,
                                          BDIMX3,
                                          BDIMY3,
1901
                                          ScaleBiasWithSameTypeX>
1902 1903 1904 1905 1906 1907 1908
            <<<blocks3, threads3, 0, stream>>>(part_grad_gamma,
                                               part_grad_beta,
                                               part_size,
                                               batch_size,
                                               feature_size,
                                               d_scale,
                                               d_bias);
1909 1910 1911 1912

        constexpr int BDIMX1 = 32;
        constexpr int BDIMY1 = 4;
        dim3 threads1(BDIMX1, BDIMY1, 1);
1913 1914 1915 1916
        LayerNormBackwardComputeGradInput<T,
                                          U,
                                          BDIMX1,
                                          BDIMY1,
1917
                                          ScaleBiasWithSameTypeX>
1918 1919 1920 1921 1922 1923 1924 1925 1926
            <<<batch_size, threads1, 0, stream>>>(d_y,
                                                  x,
                                                  batch_size,
                                                  feature_size,
                                                  mean,
                                                  var,
                                                  epsilon,
                                                  scale,
                                                  d_x);
1927 1928 1929 1930
#ifdef PADDLE_WITH_CUDA
      }
#endif

1931 1932 1933 1934 1935 1936 1937 1938 1939
      break;
    }
    default:
      break;
  }
}

}  // namespace operators
}  // namespace paddle