layer_norm_kernel.cu.h 55.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

25
#include "paddle/fluid/platform/aligned_vector.h"
26 27
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
28
#include "paddle/pten/core/ddim.h"
29 30 31 32 33 34 35 36 37 38

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;
template <typename T>
using LayerNormParamType = typename CudnnDataType<T>::BatchNormParamType;

39 40
#define LN_NUM_COLS 1024

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
inline static int GetDesiredBlockDim(int64_t block_dim) {
#ifdef __HIPCC__
  const int kMaxBlockDim = 256;
  const int lwarpSize = 64;
#else
  const int kMaxBlockDim = 512;
  const int lwarpSize = 32;
#endif
  return block_dim >= kMaxBlockDim ? kMaxBlockDim : lwarpSize;
}

template <typename U>
static __forceinline__ __device__ U WarpReduceSum(U val) {
  unsigned mask = 0u;
  CREATE_SHFL_MASK(mask, true);
  for (int offset = warpSize / 2; offset > 0; offset /= 2) {
    val += paddle::platform::CudaShuffleDownSync(mask, val, offset);
  }
  return val;
}

template <typename U>
__forceinline__ __device__ U BlockReduceSum(U val, U *shared) {
  int lane = threadIdx.x % warpSize;
  int wid = threadIdx.x / warpSize;

  val = WarpReduceSum(val);  // Each warp performs partial reduction

  __syncthreads();
  if (lane == 0) shared[wid] = val;  // Write reduced value to shared memory

  __syncthreads();  // Wait for all partial reductions
  // read from shared memory only if that warp existed
  val =
      (threadIdx.x < blockDim.x / warpSize) ? shared[lane] : static_cast<U>(0);

  if (wid == 0) val = WarpReduceSum(val);  // Final reduce within first warp

  return val;
}

#define FIXED_BLOCK_DIM_CASE_BASE(log2_block_dim, ...)  \
  case (1 << (log2_block_dim)): {                       \
    constexpr auto kBlockDim = (1 << (log2_block_dim)); \
    __VA_ARGS__;                                        \
  } break

#define FIXED_BLOCK_DIM_CASE(...)              \
  FIXED_BLOCK_DIM_CASE_BASE(9, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(8, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(7, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(6, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(5, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(4, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(3, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(2, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(1, ##__VA_ARGS__)

#define FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(                          \
    log2_block_dim, feature_size, kMaxBlockNum, ...)                        \
  case (1 << (log2_block_dim)): {                                           \
    for (int64_t i = 0; i < std::ceil(feature_size / (1.0 * kMaxBlockNum)); \
         i++) {                                                             \
      int64_t col_offset = i * static_cast<int64_t>(kMaxBlockNum);          \
      int block_num = static_cast<int>(std::min(                            \
          feature_size - col_offset, static_cast<int64_t>(kMaxBlockNum)));  \
      constexpr auto kBlockDim = (1 << (log2_block_dim));                   \
      __VA_ARGS__;                                                          \
    }                                                                       \
  } break

#define FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(feature_size, kMaxBlockNum, ...) \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(9, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__);                   \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(8, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__);                   \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(7, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__);                   \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(6, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__);                   \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(5, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__);                   \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(4, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__);                   \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(3, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__);                   \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(2, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__);                   \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(1, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__)

static __device__ __forceinline__ float real_sqrt(float x) { return sqrtf(x); }
static __device__ __forceinline__ double real_sqrt(double x) { return sqrt(x); }

template <typename T>
struct PairForLayerNorm {
  __device__ __forceinline__ PairForLayerNorm() {}
  __device__ __forceinline__ PairForLayerNorm(const T &first, const T &second)
      : first_(first), second_(second) {}

  T first_;
  T second_;
};

template <typename T>
struct PairForLayerNormAddFunctor {
  __device__ __forceinline__ PairForLayerNorm<T> operator()(
      const PairForLayerNorm<T> &p1, const PairForLayerNorm<T> &p2) {
    return PairForLayerNorm<T>(p1.first_ + p2.first_, p1.second_ + p2.second_);
  }
};

template <typename T>
__inline__ __device__ T rsqrt_(const T val) {
  return static_cast<T>(1) / sqrt(val);
}

template <>
__inline__ __device__ float rsqrt_(const float val) {
  return rsqrtf(val);
}

template <>
__inline__ __device__ double rsqrt_(const double val) {
  return rsqrt(val);
}

#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
template <>
__inline__ __device__ half rsqrt_(const half val) {
  return hrsqrt(val);
}
#endif

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
#ifdef PADDLE_WITH_CUDA
template <typename T, typename U, typename ScaleT = U, int VecSize = 8,
          int WARPS_M = 4, int WARPS_N = 1, int BYTES_PER_LDG = 16,
          int ELTS_PER_ROW = 1024, int THREADS_PER_WARP = 32,
          int THREADS_PER_ROW = WARPS_N *THREADS_PER_WARP,
          int THREADS_PER_CTA = WARPS_M *THREADS_PER_ROW,
          int ROWS_PER_CTA = WARPS_M,
          int ELTS_PER_ROW_PER_CTA = THREADS_PER_ROW *VecSize,
          int LDGS = ELTS_PER_ROW / ELTS_PER_ROW_PER_CTA>
__global__ __launch_bounds__(THREADS_PER_CTA) void ln_fwd_1024_kernel(
    int rows, int cols, const float epsilon, const T *__restrict__ x_ptr,
    const ScaleT *__restrict__ gamma_ptr, const ScaleT *__restrict__ beta_ptr,
    U *__restrict__ mean_out_ptr, U *__restrict__ var_out_ptr,
    T *__restrict__ y_ptr) {
  using Vec = platform::AlignedVector<T, VecSize>;
  using Vec_scale = platform::AlignedVector<ScaleT, VecSize>;

  const int tidx = threadIdx.x;
  const int bidx = blockIdx.x;
  const int lane = tidx % THREADS_PER_WARP;  // 0, 1, ..., 31
  const int warp = tidx / THREADS_PER_WARP;  // 0, 1, 2, 3
  const int warp_n = warp % WARPS_N;         // 0
  const int warp_m = warp / WARPS_N;         // 0, 1, 2, 3

  const int c = warp_n * THREADS_PER_WARP + lane;  // lane
  const int r = bidx * ROWS_PER_CTA + warp_m;      // row id

  Vec_scale gamma[LDGS];
  Vec_scale beta[LDGS];
#pragma unroll
  for (int it = 0, col = c; it < LDGS; it++) {
    platform::Load<ScaleT, VecSize>(gamma_ptr + col * VecSize, &gamma[it]);
    platform::Load<ScaleT, VecSize>(beta_ptr + col * VecSize, &beta[it]);
    col += THREADS_PER_ROW;
  }

  constexpr U rn = 1.f / U(LN_NUM_COLS);
  for (int row = r; row < rows; row += gridDim.x * ROWS_PER_CTA) {
    Vec x[LDGS];
#pragma unroll
    for (int it = 0, col = c; it < LDGS; it++) {
      platform::Load<T, VecSize>(x_ptr + row * LN_NUM_COLS + col * VecSize,
                                 &x[it]);
      col += THREADS_PER_ROW;
    }
    U xf[LDGS * VecSize];

    U mu_local = 0.f;

#pragma unroll
    for (int it = 0; it < LDGS; it++) {
#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        xf[it * VecSize + jt] = U(x[it][jt]);
        mu_local += xf[it * VecSize + jt];
      }
    }

#pragma unroll
    for (int it = 1; it < THREADS_PER_WARP; it *= 2) {
      mu_local += __shfl_xor_sync(uint32_t(-1), mu_local, it);
    }
    mu_local *= rn;
    if (lane == 0) {
      mean_out_ptr[row] = mu_local;
    }
    U var_local = 0.f;

#pragma unroll
    for (int it = 0; it < LDGS; it++) {
#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        U diff = xf[it * VecSize + jt] - mu_local;
        var_local += diff * diff;
      }
    }

#pragma unroll
    for (int it = 1; it < THREADS_PER_WARP; it *= 2) {
      var_local += __shfl_xor_sync(uint32_t(-1), var_local, it);
    }
    // Note: to assure if it is right for double
    U rsigma = rsqrtf(var_local * rn + epsilon);
    if (lane == 0) {
      var_out_ptr[row] = var_local * rn;
    }

#pragma unroll
    for (int it = 0; it < LDGS; it++) {
#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        // use fp16 to compute
        // ScaleT tmp = static_cast<ScaleT>(rsigma * (xf[it * VecSize + jt] -
        // mu_local));
        // x[it][jt] = gamma[it][jt] *  tmp + beta[it][jt];
        // cast to fp32 to compute
        U tmp = (rsigma * (static_cast<U>(xf[it * VecSize + jt]) - mu_local));
        x[it][jt] = static_cast<T>(static_cast<U>(gamma[it][jt]) * tmp +
                                   static_cast<U>(beta[it][jt]));
      }
    }

#pragma unroll
    for (int it = 0, col = c; it < LDGS; it++) {
      platform::Store<T, VecSize>(x[it],
                                  y_ptr + row * LN_NUM_COLS + col * VecSize);
      col += THREADS_PER_ROW;
    }
  }
}
#endif

287 288 289 290 291 292 293 294 295 296
template <typename T, typename U, bool ScaleBiasWithSameTypeX>
using LayerNormScaleBiasT =
    typename std::conditional<ScaleBiasWithSameTypeX, T, U>::type;

template <typename T, typename U, int BlockDim,
          bool ScaleBiasWithSameTypeX = false>
__global__ void LayerNormForward(
    const T *x, const LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *scale,
    const LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *bias, T *y,
    U *mean, U *var, float epsilon, int64_t feature_size) {
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
  __shared__ U mean_share;
  __shared__ U var_share;
  __shared__ U shared_mean[32];  // threadIdx.x / warpSize <= kMaxBlockDim /
                                 // warpSize <= 1024/32 = 32;
  __shared__ U shared_var[32];

  int64_t beg_idx = blockIdx.x * feature_size + threadIdx.x;
  int64_t end_idx = (blockIdx.x + 1) * feature_size;

  // Step 1: Reduce to calculate mean and var
  U mean_val = 0;
  U var_val = 0;
  for (int64_t i = beg_idx; i < end_idx; i += BlockDim) {
    U tmp = static_cast<U>(x[i]);
    mean_val += tmp;
    var_val += (tmp * tmp);
  }

  mean_val = BlockReduceSum<U>(mean_val, shared_mean);
  var_val = BlockReduceSum<U>(var_val, shared_var);

  if (threadIdx.x == 0) {
    auto scale = static_cast<float>(1.) / static_cast<float>(feature_size);
    auto tmp = mean_val * scale;
    mean[blockIdx.x] = mean_share = static_cast<U>(tmp);
    var_share = static_cast<U>(var_val * scale - mean_share * mean_share);
    var_share = var_share > U(0) ? var_share : U(0);
    var[blockIdx.x] = var_share;
  }
  __syncthreads();

  mean_val = mean_share;
  U invvar = rsqrt_<U>(var_share + static_cast<U>(epsilon));

  // Step 2: Calculate y
  if (scale != nullptr) {
    if (bias != nullptr) {
      for (int64_t i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
336 337 338
        y[i] = static_cast<T>(static_cast<U>(scale[j]) *
                                  (static_cast<U>(x[i]) - mean_val) * invvar +
                              static_cast<U>(bias[j]));
339 340 341 342
      }
    } else {
      for (int64_t i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
343 344
        y[i] = static_cast<T>(static_cast<U>(scale[j]) *
                              (static_cast<U>(x[i]) - mean_val) * invvar);
345 346 347 348 349 350 351
      }
    }
  } else {  // scale == nullptr
    if (bias != nullptr) {
      for (int64_t i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
        y[i] = static_cast<T>((static_cast<U>(x[i]) - mean_val) * invvar +
352
                              static_cast<U>(bias[j]));
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
      }
    } else {
      for (int64_t i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
        y[i] = static_cast<T>((static_cast<U>(x[i]) - mean_val) * invvar);
      }
    }
  }
}

template <typename T, typename U, int VPT>
__inline__ __device__ void cuLoadAddStridedInputs(
    const int64_t i1_block, const int thr_load_row_off,
    const int thr_load_col_off, const int i2_off, const int row_stride,
    U *warp_buf1, U *warp_buf2, const T *input, const T *dout,
    const int64_t i1_end, const int64_t n2, const U *__restrict__ mean,
    const U *__restrict__ var, const float epsilon) {
  const int64_t i1 = i1_block + thr_load_row_off;
  if (i1 >= i1_end) return;
  U curr_mean = mean[i1];
  U curr_invvar = rsqrt_<U>(var[i1] + epsilon);
  for (int k = 0; k < VPT; ++k) {
    const int i2 = i2_off + k;
    const int64_t load_idx = i1 * n2 + i2;
    const int write_idx = thr_load_row_off * row_stride + thr_load_col_off + k;
    if (i2 < n2) {
      U curr_input = static_cast<U>(input[load_idx]);
      U curr_dout = static_cast<U>(dout[load_idx]);
      warp_buf1[write_idx] += curr_dout;
      warp_buf2[write_idx] +=
          curr_dout * (curr_input - curr_mean) * curr_invvar;
    }
  }
}

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
#ifdef PADDLE_WITH_CUDA
template <
    bool isFusedDropoutResidualLn, typename T, typename U, typename ScaleT = U,
    typename MaskType = uint8_t, int VecSize = 8, int WARPS_M = 4,
    int WARPS_N = 1, int BYTES_PER_LDG = 16, int ELTS_PER_ROW = 1024,
    int THREADS_PER_WARP = 32, int THREADS_PER_ROW = WARPS_N *THREADS_PER_WARP,
    int THREADS_PER_CTA = WARPS_M *THREADS_PER_ROW, int ROWS_PER_CTA = WARPS_M,
    int ELTS_PER_ROW_PER_CTA = THREADS_PER_ROW *VecSize,
    int LDGS = ELTS_PER_ROW / ELTS_PER_ROW_PER_CTA>
__global__ __launch_bounds__(THREADS_PER_CTA) void fused_ln_bwd_1024_kernel(
    const int rows, float epsilon, const T *__restrict__ x_ptr,
    const ScaleT *__restrict__ gamma_ptr, const U *__restrict__ mean_ptr,
    const U *__restrict__ var_ptr, const T *__restrict__ dout_ptr,
    U *__restrict__ dgamma_temp_ptr, U *__restrict__ dbeta_temp_ptr,
    T *__restrict__ dx_ptr, const MaskType *mask_ptr = nullptr,
    T factor = static_cast<T>(0), T *d_dropout_src_ptr = nullptr) {
  using Vec = platform::AlignedVector<T, VecSize>;
  using Vec_scale = platform::AlignedVector<ScaleT, VecSize>;
  using MaskLoadT = platform::AlignedVector<MaskType, VecSize>;

  const int tidx = threadIdx.x;
  const int bidx = blockIdx.x;
  const int lane = tidx % THREADS_PER_WARP;            // 0, 1, ..., 31
  const int warp = tidx / THREADS_PER_WARP;            // 0, 1, 2, 3
  const int warp_m = warp / WARPS_N;                   // 0, 1, 2, 3
  const int warp_n = warp % WARPS_N;                   // 0
  const int tid_r = warp_n * THREADS_PER_WARP + lane;  // 0, 1, ..., 31

  const int r = bidx * ROWS_PER_CTA + warp_m;
  const int c = warp_n * THREADS_PER_WARP + lane;

  static_assert(LN_NUM_COLS == THREADS_PER_ROW * LDGS * VecSize, "");

  // smem for column reduction
  __shared__ U smem_[ROWS_PER_CTA * LN_NUM_COLS];

  U dgamma_sum[LDGS * VecSize];
  U dbeta_sum[LDGS * VecSize];

  memset(dgamma_sum, 0, sizeof(U) * LDGS * VecSize);
  memset(dbeta_sum, 0, sizeof(U) * LDGS * VecSize);

  // Note: it is no use for WARP_N = 1
  __shared__ U smem_sum_loss1[ROWS_PER_CTA * WARPS_N];  // 4
  __shared__ U smem_sum_loss2[ROWS_PER_CTA * WARPS_N];  // 4
  U *sum_loss1_shared = &smem_sum_loss1[warp_m * WARPS_N];
  U *sum_loss2_shared = &smem_sum_loss2[warp_m * WARPS_N];

  // step-1: compute dx and local results of dscale and dbias
  constexpr float rn = 1.f / static_cast<float>(LN_NUM_COLS);
  Vec_scale gamma[LDGS];
  int col = c;
#pragma unroll
  for (int it = 0; it < LDGS; it++) {
    platform::Load<ScaleT, VecSize>(gamma_ptr + col * VecSize, &gamma[it]);
    col += THREADS_PER_ROW;
  }

#pragma unroll 1
  for (int row = r; row < rows; row += gridDim.x * ROWS_PER_CTA) {
    const U mean_cur_row = mean_ptr[row];
    const U var_cur_row = rsqrt_<U>(var_ptr[row] + epsilon);
    Vec dout[LDGS], x[LDGS];
    MaskLoadT mask_vec[LDGS];
    int col = c;
#pragma unroll
    for (int it = 0; it < LDGS; it++) {
      platform::Load<T, VecSize>(dout_ptr + row * LN_NUM_COLS + col * VecSize,
                                 &dout[it]);
      platform::Load<T, VecSize>(x_ptr + row * LN_NUM_COLS + col * VecSize,
                                 &x[it]);
      if (isFusedDropoutResidualLn) {
        platform::Load<MaskType, VecSize>(
            mask_ptr + row * LN_NUM_COLS + col * VecSize, &mask_vec[it]);
      }

      col += THREADS_PER_ROW;
    }

    // local reductions
    U dy[LDGS * VecSize];
    U y[LDGS * VecSize];

    U sum_loss1 = 0.f;
    U sum_loss2 = 0.f;
#pragma unroll
    for (int it = 0; it < LDGS; it++) {
#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        U x_tmp = x[it][jt];
        U y_tmp = var_cur_row * (x_tmp - mean_cur_row);
        U dy_tmp = static_cast<U>(gamma[it][jt]) *
                   static_cast<U>(dout[it][jt]);  // scale * dy
        U dout_tmp = dout[it][jt];                // dy

        // used for get dx (row reduction)
        sum_loss1 += dy_tmp;          // scale * dy, sum_1
        sum_loss2 += dy_tmp * y_tmp;  // scale * dy * y, sum_2

        dy[it * VecSize + jt] = dy_tmp;  // scale * dy
        y[it * VecSize + jt] = y_tmp;    // y

        // used for get dscale and dbias (column reduction)
        dgamma_sum[it * VecSize + jt] += dout_tmp * y_tmp;  // dy * y
        dbeta_sum[it * VecSize + jt] += dout_tmp;           // dy
      }
    }

    // reduction across row for sum_loss1, sum_loss2
    if (WARPS_N == 1) {
#pragma unroll
      // row reduction among 32 threads.
      for (int it = 1; it < THREADS_PER_WARP; it *= 2) {
        sum_loss1 += __shfl_xor_sync(uint32_t(-1), sum_loss1, it);
        sum_loss2 += __shfl_xor_sync(uint32_t(-1), sum_loss2, it);
      }
      sum_loss1 *= rn;
      sum_loss2 *= rn;
    } else {
#pragma unroll
      for (int it = 16; it > 0; it /= 2) {
        sum_loss1 += __shfl_down_sync(uint32_t(-1), sum_loss1, it);
        sum_loss2 += __shfl_down_sync(uint32_t(-1), sum_loss2, it);
      }

      if (lane == 0) {
        sum_loss1_shared[warp_n] = sum_loss1;
        sum_loss2_shared[warp_n] = sum_loss2;
      }

      __syncthreads();
      if (warp_n == 0 && lane == 0) {
        sum_loss1 = 0.f;
        sum_loss2 = 0.f;
        for (int it = 0; it < WARPS_N; it++) {
          sum_loss1 += sum_loss1_shared[it];
          sum_loss2 += sum_loss2_shared[it];
        }
        sum_loss1_shared[0] = sum_loss1;
        sum_loss2_shared[0] = sum_loss2;
      }
      __syncthreads();

      sum_loss1 = sum_loss1_shared[0] * rn;
      sum_loss2 = sum_loss2_shared[0] * rn;
    }

#pragma unroll
    for (int it = 0; it < LDGS; it++) {
#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        U dy_tmp = dy[it * VecSize + jt];  // scale * dy
        U y_tmp = y[it * VecSize + jt];    // y
        // dx = var * (scale * dy - sum_loss2 * y - sum_loss1)
        U dx_tmp = var_cur_row * (dy_tmp - sum_loss2 * y_tmp - sum_loss1);
        // Note: reuse x and dout vec register to store dx and d_dropout_src.
        x[it][jt] = static_cast<T>(dx_tmp);
        if (isFusedDropoutResidualLn) {
          dout[it][jt] = x[it][jt] * static_cast<T>(mask_vec[it][jt]) * factor;
        }
      }
    }

    // store dx to global memory
    col = c;
#pragma unroll
    for (int it = 0; it < LDGS; it++) {
      platform::Store<T, VecSize>(x[it],
                                  dx_ptr + row * LN_NUM_COLS + col * VecSize);
      if (isFusedDropoutResidualLn) {
        platform::Store<T, VecSize>(
            dout[it], d_dropout_src_ptr + row * LN_NUM_COLS + col * VecSize);
      }
      col += THREADS_PER_ROW;
    }
  }

  // step-2: column reduction of dscale and dbias for each thread block.
  // each block's sum: [4 * 1024] -> [1 * 1024]
  enum { NUM_RES = LN_NUM_COLS / THREADS_PER_CTA };  // 1024/128 = 8
  static_assert(NUM_RES * THREADS_PER_CTA == LN_NUM_COLS, "");

  U *smem_write;

  smem_write = &smem_[warp_m * LN_NUM_COLS + tid_r * VecSize];  // [4 * 1024]
#pragma unroll
  for (int it = 0; it < LDGS; it++) {
#pragma unroll
    for (int jt = 0; jt < VecSize; jt++) {
      smem_write[jt] = dbeta_sum[it * VecSize + jt];
    }
    smem_write += THREADS_PER_ROW * VecSize;  // 32*8
  }
  __syncthreads();
  U cta_dbeta_sum[NUM_RES];
  memset(cta_dbeta_sum, 0, sizeof(U) * NUM_RES);
  // column reduction for elems in smem: 4*1024 -> 1*1024.
  for (int it = 0; it < ROWS_PER_CTA; it++) {
    for (int jt = 0; jt < NUM_RES; jt++) {
      cta_dbeta_sum[jt] +=
          smem_[it * LN_NUM_COLS + tidx + jt * THREADS_PER_CTA];
    }
  }
  __syncthreads();

  smem_write = &smem_[warp_m * LN_NUM_COLS + tid_r * VecSize];
#pragma unroll
  for (int it = 0; it < LDGS; it++) {
#pragma unroll
    for (int jt = 0; jt < VecSize; jt++) {
      smem_write[jt] = dgamma_sum[it * VecSize + jt];
    }
    smem_write += THREADS_PER_ROW * VecSize;
  }
  __syncthreads();
  U cta_dgamma_sum[NUM_RES];
  memset(cta_dgamma_sum, 0, sizeof(U) * NUM_RES);
  for (int it = 0; it < ROWS_PER_CTA; it++) {
    for (int jt = 0; jt < NUM_RES; jt++) {
      cta_dgamma_sum[jt] +=
          smem_[it * LN_NUM_COLS + tidx + jt * THREADS_PER_CTA];
    }
  }

  // the shape of results:(#blocks, 1024)
  U *dgamma_part =
      static_cast<U *>(dgamma_temp_ptr) + bidx * LN_NUM_COLS + tidx;
  for (int jt = 0; jt < NUM_RES; jt++) {
    *dgamma_part = cta_dgamma_sum[jt];
    dgamma_part += THREADS_PER_CTA;
  }

  U *dbeta_part = static_cast<U *>(dbeta_temp_ptr) + bidx * LN_NUM_COLS + tidx;
  for (int jt = 0; jt < NUM_RES; jt++) {
    *dbeta_part = cta_dbeta_sum[jt];
    dbeta_part += THREADS_PER_CTA;
  }
}

/* This function carry out column reduction whose input is [rows, 1024] and
 * output is [1, 1024].
 * #blocks: 32
 * #threads: 512
*/
// todo(@limin29): to think if there are better impl strategies
template <
    typename U, typename ScaleT = U, int VecSize = 1, int WARPS_M = 16,
    int WARPS_N = 1, int BYTES_PER_LDG = 4, int ELTS_PER_ROW = 1024,
    int THREADS_PER_WARP = 32, int THREADS_PER_ROW = WARPS_N *THREADS_PER_WARP,
    int THREADS_PER_CTA = WARPS_M *THREADS_PER_ROW, int ROWS_PER_CTA = WARPS_M,
    int ELTS_PER_ROW_PER_CTA = THREADS_PER_ROW *VecSize,
    int LDGS = ELTS_PER_ROW / ELTS_PER_ROW_PER_CTA,
    int VEC_COLS = ELTS_PER_ROW / VecSize>
__global__ __launch_bounds__(THREADS_PER_CTA) void ln_bwd_1024_final_kernel(
    const int rows, U *__restrict__ dg_part_, U *__restrict__ db_part_,
    ScaleT *__restrict__ dg_, ScaleT *__restrict__ db_) {
  using Vec = platform::AlignedVector<U, VecSize>;
  static_assert(VEC_COLS == LN_NUM_COLS / VecSize, "");

  const int tidx = threadIdx.x;
  const int bidx = blockIdx.x;
  const int lane = tidx % THREADS_PER_WARP;
  const int warp = tidx / THREADS_PER_WARP;
  const int warp_m = warp / WARPS_N;
  const int warp_n = warp % WARPS_N;
  const int tid_c = warp_n * THREADS_PER_WARP + lane;

  const int c = bidx * THREADS_PER_ROW + tid_c;
  const int r = warp_m;

  __shared__ U smem_space[(WARPS_M - 1) * THREADS_PER_ROW * VecSize];

  for (int col = c; col < VEC_COLS; col += gridDim.x * THREADS_PER_ROW) {
    const U *dg_part_ptr = (dg_part_) + r * LN_NUM_COLS + col * VecSize;
    const U *db_part_ptr = (db_part_) + r * LN_NUM_COLS + col * VecSize;

    U dg_sum[VecSize];
    U db_sum[VecSize];
    memset(dg_sum, 0, sizeof(U) * VecSize);
    memset(db_sum, 0, sizeof(U) * VecSize);
#pragma unroll
    for (int row = r; row < rows; row += ROWS_PER_CTA) {
      Vec dg;
      Vec db;
      platform::Load<U, VecSize>(dg_part_ptr, &dg);
      platform::Load<U, VecSize>(db_part_ptr, &db);
      dg_part_ptr += ROWS_PER_CTA * LN_NUM_COLS;
      db_part_ptr += ROWS_PER_CTA * LN_NUM_COLS;

#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        dg_sum[jt] += dg[jt];
        db_sum[jt] += db[jt];
      }
    }

    // reduction across rows of the thread block
    U *smem_write;
    smem_write = smem_space + (warp_m - 1) * THREADS_PER_ROW * VecSize + tid_c;

    if (warp_m > 0) {
#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        *smem_write = dg_sum[jt];
        smem_write += THREADS_PER_ROW;
      }
    }
    __syncthreads();

    U *smem_read;
    smem_read = smem_space + tid_c;
    if (warp_m == 0) {
#pragma unroll
      for (int it = 0; it < WARPS_M - 1; it++) {
#pragma unroll
        for (int jt = 0; jt < VecSize; jt++) {
          dg_sum[jt] += *smem_read;
          smem_read += THREADS_PER_ROW;
        }
      }
    }

    __syncthreads();

    smem_write = smem_space + (warp_m - 1) * THREADS_PER_ROW * VecSize + tid_c;

    if (warp_m > 0) {
#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        *smem_write = db_sum[jt];
        smem_write += THREADS_PER_ROW;
      }
    }
    __syncthreads();

    smem_read = smem_space + tid_c;
    if (warp_m == 0) {
#pragma unroll
      for (int it = 0; it < WARPS_M - 1; it++) {
#pragma unroll
        for (int jt = 0; jt < VecSize; jt++) {
          db_sum[jt] += *smem_read;
          smem_read += THREADS_PER_ROW;
        }
      }

      union {
        ScaleT raw;
        ScaleT elt[VecSize];
      } dg_out, db_out;

#pragma unroll
      for (int jt = 0; jt < VecSize; jt++) {
        dg_out.elt[jt] = dg_sum[jt];
        db_out.elt[jt] = db_sum[jt];
      }
      ScaleT *dg_ptr = reinterpret_cast<ScaleT *>(dg_) + col;
      ScaleT *db_ptr = reinterpret_cast<ScaleT *>(db_) + col;
      *dg_ptr = dg_out.raw;
      *db_ptr = db_out.raw;
    }
  }
}

/* This function support two kinds of computations (only for float and fp16
* type):
*
* Case-1: compute layer_norm_grad for layernorm op by setting mask_ptr and
* d_dropout_src_ptr to nullptr. Here, d_x_ptr returns the grad of layernorm
* input.
*
* Case-2: compute layer_norm_grad + residual_grad + dropout_grad for
* fused_dropout_residual_layernorm op. Here, dx_ptr returns residual_grad.
*
*/
template <typename T, typename U, typename ScaleT = U,
          typename MaskType = uint8_t>
void ln_bwd_1024_kernel_driver(
    const platform::CUDADeviceContext &dev_ctx, const int rows, const int cols,
    float epsilon, const T *x_ptr, const ScaleT *scale_ptr, const U *mean_ptr,
    const U *var_ptr, const T *dout_ptr, T *dx_ptr, ScaleT *dscale_ptr,
    ScaleT *dbias_ptr, const MaskType *mask_ptr = nullptr,
    T factor = static_cast<T>(0), T *d_dropout_src_ptr = nullptr) {
  auto stream = dev_ctx.stream();
  if (cols == 1024) {
    // step-1: compute dx and reduced part results of dscale and dbias.
    const int WARPS_M = 4;
    const int WARPS_N = 1;
    const int BYTES_PER_LDG = 16;
    const int VecSize = BYTES_PER_LDG / sizeof(T);

    const int THREADS_PER_WARP = 32;
    const int THREADS_PER_ROW = WARPS_N * THREADS_PER_WARP;
    const int THREADS_PER_CTA = WARPS_M * THREADS_PER_ROW;
    const int ROWS_PER_CTA = WARPS_M;

    // 4 * 1024 * 4
    const int SMEM_BYTES = ROWS_PER_CTA * cols * sizeof(U);

    // #blocks = 2 * #SM
    const int gridx = 2 * dev_ctx.GetSMCount();

    // get temp space for dscale and dbias.
    framework::Tensor dscale_temp;
    dscale_temp.Resize({gridx, cols});
    dscale_temp.mutable_data<U>(dev_ctx.GetPlace());
    U *dscale_temp_ptr = dscale_temp.data<U>();

    framework::Tensor dbias_temp;
    dbias_temp.Resize({gridx, cols});
    dbias_temp.mutable_data<U>(dev_ctx.GetPlace());
    U *dbias_temp_ptr = dbias_temp.data<U>();

    if (mask_ptr != nullptr) {
      if (d_dropout_src_ptr == nullptr) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "To compute fused_dropout_residual_ln grad, d_dropout_src_ptr "
            "can't be null"));
      }
      fused_ln_bwd_1024_kernel<
          true, T, U, ScaleT, MaskType, VecSize, WARPS_M, WARPS_N,
          BYTES_PER_LDG><<<gridx, THREADS_PER_CTA, 0, stream>>>(
          rows, epsilon, x_ptr, scale_ptr, mean_ptr, var_ptr, dout_ptr,
          dscale_temp_ptr, dbias_temp_ptr, dx_ptr, mask_ptr, factor,
          d_dropout_src_ptr);

    } else {
      fused_ln_bwd_1024_kernel<
          false, T, U, ScaleT, MaskType, VecSize, WARPS_M, WARPS_N,
          BYTES_PER_LDG><<<gridx, THREADS_PER_CTA, 0, stream>>>(
          rows, epsilon, x_ptr, scale_ptr, mean_ptr, var_ptr, dout_ptr,
          dscale_temp_ptr, dbias_temp_ptr, dx_ptr);
    }
    const int WARPS_M_2 = 16;
    const int WARPS_N_2 = 1;
    const int BYTES_PER_LDG_2 = 4;
    const int VecSize_2 =
        std::max(1, static_cast<int>(BYTES_PER_LDG_2 / sizeof(U)));  // 1

    const int THREADS_PER_WARP_2 = 32;
    const int THREADS_PER_ROW_2 = WARPS_N_2 * THREADS_PER_WARP_2;  // 32
    const int THREADS_PER_CTA_2 =
        WARPS_M_2 * THREADS_PER_ROW_2;     // 16 * 32 = 512
    const int ROWS_PER_CTA_2 = WARPS_M_2;  // 16

    const int gridx_2 = static_cast<int>(
        std::ceil(1024 / static_cast<float>(THREADS_PER_ROW_2 * VecSize_2)));
    // #blocks: 32,#threads_per_block: 512
    // Note: it is not supported for double type.
    if (sizeof(U) > 4) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only support float and fp16 type"));
    } else {
      ln_bwd_1024_final_kernel<
          U, ScaleT, VecSize_2, WARPS_M_2, WARPS_N_2,
          BYTES_PER_LDG_2><<<gridx_2, THREADS_PER_CTA_2, 0, stream>>>(
          gridx, dscale_temp_ptr, dbias_temp_ptr, dscale_ptr, dbias_ptr);
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Fast layer_norm kernel is only used when feature_size is 1024"));
  }
}
#endif

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
template <typename T, typename U, int BDIMX, int BDIMY, int VPTX>
__global__ void LayerNormBackwardPartGradGammaBeta(
    const T *__restrict__ dout, const T *__restrict__ input, const int64_t n1,
    const int64_t n2, const U *__restrict__ mean, const U *__restrict__ var,
    float epsilon, U *part_grad_gamma, U *part_grad_beta) {
  // VPTX -> value per thread.x, BDIMX -> blockDim.x, BDIMY -> blockDim.y, BDIMX
  // -> blockDim.x
  // template for compile time optimizations

  constexpr int row_stride = BDIMX + 1;
  const int thr_load_col_off = (threadIdx.x * VPTX) & (BDIMX - 1);
  const int thr_load_row_off =
      (threadIdx.x * VPTX) / BDIMX + threadIdx.y * BDIMY;
  const int i2_off = blockIdx.x * BDIMX + thr_load_col_off;

  constexpr int shared_cap = (BDIMX * BDIMY > 2 * VPTX * BDIMY * row_stride)
                                 ? BDIMX * BDIMY
                                 : 2 * VPTX * BDIMY * row_stride;
  __shared__ U buf[shared_cap];

  U *warp_buf1 = reinterpret_cast<U *>(buf);
  U *warp_buf2 = warp_buf1 + VPTX * BDIMY * row_stride;

  for (int idx = threadIdx.y * blockDim.x + threadIdx.x;
       idx < 2 * VPTX * BDIMY * row_stride; idx += BDIMX * BDIMY) {
    buf[idx] = U(0);
  }
  __syncthreads();

  for (int64_t i1_block = blockIdx.y * BDIMY * VPTX; i1_block < n1;
       i1_block += VPTX * BDIMY * gridDim.y) {
    cuLoadAddStridedInputs<T, U, VPTX>(
        i1_block, thr_load_row_off, thr_load_col_off, i2_off, row_stride,
        warp_buf1, warp_buf2, input, dout, n1, n2, mean, var, epsilon);
  }
  __syncthreads();

  // inter-warp reductions
  // sum within each warp
  U acc1 = U(0);
  U acc2 = U(0);
  for (int k = 0; k < VPTX; ++k) {
    int row1 = threadIdx.y + k * VPTX;
    int idx1 = row1 * row_stride + threadIdx.x;
    acc1 += warp_buf1[idx1];
    acc2 += warp_buf2[idx1];
  }
  warp_buf1[threadIdx.y * row_stride + threadIdx.x] = acc1;
  warp_buf2[threadIdx.y * row_stride + threadIdx.x] = acc2;
  __syncthreads();
  // sum all warps
  for (int offset = VPTX >> 1; offset > 1; offset >>= 1) {
    if (threadIdx.y < offset) {
      int row1 = threadIdx.y;
      int row2 = threadIdx.y + offset;
      int idx1 = row1 * row_stride + threadIdx.x;
      int idx2 = row2 * row_stride + threadIdx.x;
      warp_buf1[idx1] += warp_buf1[idx2];
      warp_buf2[idx1] += warp_buf2[idx2];
    }
    __syncthreads();
  }
  int64_t i2 = blockIdx.x * blockDim.x + threadIdx.x;
  if (threadIdx.y == 0 && i2 < n2) {
    int row1 = threadIdx.y;
    int row2 = threadIdx.y + 1;
    int idx1 = row1 * row_stride + threadIdx.x;
    int idx2 = row2 * row_stride + threadIdx.x;
    part_grad_beta[blockIdx.y * n2 + i2] = warp_buf1[idx1] + warp_buf1[idx2];
    part_grad_gamma[blockIdx.y * n2 + i2] = warp_buf2[idx1] + warp_buf2[idx2];
  }
}

926
template <typename T, typename U, int BDIMX, int BDIMY, bool ScaleBiasSameTypeX>
927 928 929
__global__ void LayerNormBackwardSumGradGammaBeta(
    const U *part_grad_gamma, const U *part_grad_beta, const int part_size,
    // const int n1, const int n2, T* grad_gamma, T* grad_beta) {
930 931 932
    const int n1, const int n2,
    LayerNormScaleBiasT<T, U, ScaleBiasSameTypeX> *grad_gamma,
    LayerNormScaleBiasT<T, U, ScaleBiasSameTypeX> *grad_beta) {
933
  // sum partial gradients for gamma and beta
934
  using ScaleBiasT = LayerNormScaleBiasT<T, U, ScaleBiasSameTypeX>;
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
  __shared__ U buf[BDIMX * BDIMY];
  int64_t i2 = blockIdx.x * BDIMX + threadIdx.x;
  if (i2 < n2) {
    // each warp does sequential reductions until reduced part_size is num_warps
    int num_warp_reductions = part_size / BDIMY;
    U sum_gamma = U(0);
    U sum_beta = U(0);
    const U *part_grad_gamma_ptr =
        part_grad_gamma + threadIdx.y * num_warp_reductions * n2 + i2;
    const U *part_grad_beta_ptr =
        part_grad_beta + threadIdx.y * num_warp_reductions * n2 + i2;
    for (int warp_offset = 0; warp_offset < num_warp_reductions;
         ++warp_offset) {
      sum_gamma += part_grad_gamma_ptr[warp_offset * n2];
      sum_beta += part_grad_beta_ptr[warp_offset * n2];
    }
    // inter-warp reductions
    constexpr int nbsize3 = BDIMX * BDIMY / 2;
    for (int offset = BDIMY / 2; offset >= 1; offset /= 2) {
      // top half write to shared memory
      if (threadIdx.y >= offset && threadIdx.y < 2 * offset) {
        const int write_idx = (threadIdx.y - offset) * blockDim.x + threadIdx.x;
        buf[write_idx] = sum_gamma;
        buf[write_idx + nbsize3] = sum_beta;
      }
      __syncthreads();
      // bottom half sums
      if (threadIdx.y < offset) {
        const int read_idx = threadIdx.y * BDIMX + threadIdx.x;
        sum_gamma += buf[read_idx];
        sum_beta += buf[read_idx + nbsize3];
      }
      __syncthreads();
    }
    // write out fully summed gradients
    if (threadIdx.y == 0) {
971 972
      grad_gamma[i2] = static_cast<ScaleBiasT>(sum_gamma);
      grad_beta[i2] = static_cast<ScaleBiasT>(sum_beta);
973 974 975 976
    }
  }
}

977
template <typename T, typename U, int BDIMX, int BDIMY, bool ScaleBiasSameTypeX>
978 979
__global__ void LayerNormBackwardComputeGradInput(
    const T *__restrict__ dout, const T *__restrict__ input, const int n1,
980 981 982
    const int n2, const U *__restrict__ mean, const U *__restrict__ var,
    const float epsilon,
    const LayerNormScaleBiasT<T, U, ScaleBiasSameTypeX> *gamma, T *grad_input) {
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
#ifdef __HIPCC__
  for (auto i1 = hipBlockIdx_x; i1 < n1; i1 += hipGridDim_x) {
#else
  for (auto i1 = blockIdx.x; i1 < n1; i1 += gridDim.x) {
#endif
    U sum_loss1 = U(0);
    U sum_loss2 = U(0);
    const U c_mean = mean[i1];
    const U c_invvar = rsqrt_<U>(var[i1] + epsilon);
    const T *k_input = input + i1 * n2;
    const T *k_dout = dout + i1 * n2;
    constexpr int numx = BDIMX * BDIMY;
    const int thrx = threadIdx.x + threadIdx.y * BDIMX;
    if (gamma != NULL) {
      int l = 4 * thrx;
      for (; l + 3 < n2; l += 4 * numx) {
        for (int k = 0; k < 4; ++k) {
          const U c_h = static_cast<U>(k_input[l + k]);
          const U c_loss = static_cast<U>(k_dout[l + k]);
1002 1003 1004
          sum_loss1 += c_loss * static_cast<U>(gamma[l + k]);
          sum_loss2 +=
              c_loss * static_cast<U>(gamma[l + k]) * (c_h - c_mean) * c_invvar;
1005 1006 1007 1008 1009
        }
      }
      for (; l < n2; ++l) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
1010 1011 1012
        sum_loss1 += c_loss * static_cast<U>(gamma[l]);
        sum_loss2 +=
            c_loss * static_cast<U>(gamma[l]) * (c_h - c_mean) * c_invvar;
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
      }
    } else {
      int l = 4 * thrx;
      for (; l + 3 < n2; l += 4 * numx) {
        for (int k = 0; k < 4; ++k) {
          const U c_h = static_cast<U>(k_input[l + k]);
          const U c_loss = static_cast<U>(k_dout[l + k]);
          sum_loss1 += c_loss;
          sum_loss2 += c_loss * (c_h - c_mean) * c_invvar;
        }
      }
      for (; l < n2; ++l) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
        sum_loss1 += c_loss;
        sum_loss2 += c_loss * (c_h - c_mean) * c_invvar;
      }
    }
    // intra-warp reductions
    for (int mask = BDIMX / 2; mask > 0; mask /= 2) {
#ifdef PADDLE_WITH_HIP
      sum_loss1 += __shfl_xor(sum_loss1, mask,
                              warpSize);  // WARP_SHFL_XOR(sum_loss1, mask);
      sum_loss2 += __shfl_xor(sum_loss2, mask,
                              warpSize);  // WARP_SHFL_XOR(sum_loss2, mask);
#else
      sum_loss1 +=
          __shfl_xor_sync(0xffffffff, sum_loss1, mask,
                          warpSize);  // WARP_SHFL_XOR(sum_loss1, mask);
      sum_loss2 +=
          __shfl_xor_sync(0xffffffff, sum_loss2, mask,
                          warpSize);  // WARP_SHFL_XOR(sum_loss2, mask);
#endif
    }
    // inter-warp reductions
    if (BDIMY > 1) {
      __shared__ U buf[BDIMX * BDIMY];
      for (int offset = BDIMY / 2; offset > 0; offset /= 2) {
        // upper half of warps write to shared
        if (threadIdx.y >= offset && threadIdx.y < 2 * offset) {
          const int wrt_i = (threadIdx.y - offset) * BDIMX + threadIdx.x;
          buf[2 * wrt_i] = sum_loss1;
          buf[2 * wrt_i + 1] = sum_loss2;
        }
        __syncthreads();
        // lower half merges
        if (threadIdx.y < offset) {
          const int read_i = threadIdx.y * blockDim.x + threadIdx.x;
          sum_loss1 += buf[2 * read_i];
          sum_loss2 += buf[2 * read_i + 1];
        }
        __syncthreads();
      }
      if (threadIdx.y == 0) {
        buf[2 * threadIdx.x] = sum_loss1;
        buf[2 * threadIdx.x + 1] = sum_loss2;
      }
      __syncthreads();
      if (threadIdx.y != 0) {
        sum_loss1 = buf[2 * threadIdx.x];
        sum_loss2 = buf[2 * threadIdx.x + 1];
      }
    }
    // all threads now have the two sums over l
    U fH = (U)n2;
    U term1 = (U(1) / fH) * c_invvar;
    T *k_grad_input = grad_input + i1 * n2;
    if (gamma != NULL) {
      for (int l = thrx; l < n2; l += numx) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
1084
        U f_grad_input = fH * c_loss * static_cast<U>(gamma[l]);
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
        f_grad_input -= sum_loss1;
        f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2;
        f_grad_input *= term1;
        k_grad_input[l] = static_cast<T>(f_grad_input);
      }
    } else {
      for (int l = thrx; l < n2; l += numx) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
        U f_grad_input = fH * c_loss;
        f_grad_input -= sum_loss1;
        f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2;
        f_grad_input *= term1;
        k_grad_input[l] = static_cast<T>(f_grad_input);
      }
    }
  }
}

// Make sure that d_scale != nullptr && d_bias != nullptr
// Since d_scale != nullptr, scale would not be nullptr
1106 1107
template <typename T, typename U, int BlockDim, bool HasDx,
          bool ScaleBiasWithSameTypeX>
1108
__global__ void LayerNormBackwardGradientAll(
1109 1110 1111 1112 1113 1114 1115 1116
    const T *x, const T *d_y,
    LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *d_scale,
    LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *d_bias, T *d_x,
    const U *mean, const U *var,
    const LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *scale,
    float epsilon, int64_t batch_size, int64_t feature_size,
    int64_t col_offset) {
  using ScaleBiasT = LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX>;
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
  int64_t beg_idx = threadIdx.x * feature_size + (blockIdx.x + col_offset);
  int64_t end_idx = batch_size * feature_size + (blockIdx.x + col_offset);
  int64_t stride = BlockDim * feature_size;

  U d_scale_partial = static_cast<U>(0), d_bias_partial = static_cast<U>(0);

  for (int64_t i = beg_idx; i < end_idx; i += stride) {
    int row_idx = i / feature_size;
    auto var_val = real_sqrt(static_cast<U>(var[row_idx]) + epsilon);
    d_scale_partial += static_cast<U>(d_y[i]) *
                       (static_cast<U>(x[i]) - mean[row_idx]) / var_val;
    d_bias_partial += static_cast<U>(d_y[i]);
    if (HasDx) {
      d_x[i] = static_cast<T>(static_cast<U>(d_y[i]) *
1131 1132
                              static_cast<U>(scale[blockIdx.x + col_offset]) /
                              var_val);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
    }
  }

  __shared__ U shared_scale[32];  // threadIdx.x / warpSize <= kMaxBlockDim /
                                  // warpSize <= 1024/32 = 32;
  __shared__ U shared_bias[32];
  d_scale_partial = BlockReduceSum<U>(d_scale_partial, shared_scale);
  d_bias_partial = BlockReduceSum<U>(d_bias_partial, shared_bias);

  if (threadIdx.x == 0) {
1143 1144
    d_scale[blockIdx.x + col_offset] = static_cast<ScaleBiasT>(d_scale_partial);
    d_bias[blockIdx.x + col_offset] = static_cast<ScaleBiasT>(d_bias_partial);
1145 1146 1147 1148 1149 1150
  }
}

// Make sure that there is only one true expression: d_scale != nullptr
// or d_bias != nullptr
// Notice: scale may be nullptr
1151 1152
template <typename T, typename U, int BlockDim, bool HasDx, bool HasDScale,
          bool ScaleBiasWithSameTypeX>
1153
__global__ void LayerNormBackwardGradientScaleOrBias(
1154 1155 1156 1157 1158 1159 1160
    const T *x, const T *d_y,
    LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *d_scale,
    LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *d_bias, T *d_x,
    const U *mean, const U *var,
    const LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *scale,
    float epsilon, int64_t batch_size, int64_t feature_size, int col_offset) {
  using ScaleBiasT = LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX>;
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
  using BlockReduce = cub::BlockReduce<U, BlockDim>;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  int64_t beg_idx = threadIdx.x * feature_size + blockIdx.x + col_offset;
  int64_t end_idx = batch_size * feature_size + blockIdx.x + col_offset;
  int stride = BlockDim * feature_size;
  U d_scale_or_d_bias_partial = static_cast<U>(0);

  for (int64_t i = beg_idx; i < end_idx; i += stride) {
    int row_idx = i / feature_size;
    auto var_val =
        static_cast<U>(real_sqrt(static_cast<float>(var[row_idx]) + epsilon));
    if (HasDScale) {
      d_scale_or_d_bias_partial += static_cast<U>(d_y[i]) *
                                   (static_cast<U>(x[i]) - mean[row_idx]) /
                                   var_val;
    } else {  // d_bias != nullptr
      d_scale_or_d_bias_partial += static_cast<U>(d_y[i]);
    }

    if (HasDx) {
      if (scale != nullptr) {
        d_x[i] = static_cast<T>(static_cast<U>(d_y[i]) *
1183 1184
                                static_cast<U>(scale[blockIdx.x + col_offset]) /
                                var_val);
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
      } else {
        d_x[i] = static_cast<T>(static_cast<U>(d_y[i]) / var_val);
      }
    }
  }

  d_scale_or_d_bias_partial =
      BlockReduce(temp_storage).Reduce(d_scale_or_d_bias_partial, cub::Sum());

  if (threadIdx.x == 0) {
    if (HasDScale) {
1196 1197
      d_scale[blockIdx.x + col_offset] =
          static_cast<ScaleBiasT>(d_scale_or_d_bias_partial);
1198
    } else {
1199 1200
      d_bias[blockIdx.x + col_offset] =
          static_cast<ScaleBiasT>(d_scale_or_d_bias_partial);
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
    }
  }
}

template <typename T, typename U, int BlockDim>
__global__ void LayerNormBackwardPostProcessToCalculateDX(
    const T *x, T *d_x, const U *mean, const U *var, float epsilon,
    int64_t feature_size) {
  using BlockReduce = cub::BlockReduce<PairForLayerNorm<U>, BlockDim>;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  __shared__ U d_x_reduce_tmp[2];

  int64_t beg_idx = blockIdx.x * feature_size + threadIdx.x;
  int64_t end_idx = (blockIdx.x + 1) * feature_size;

  U block_mean = mean[blockIdx.x];
  U block_var = var[blockIdx.x];
  U d_x_mean_partial = static_cast<U>(0), d_x_var_partial = static_cast<U>(0);
  for (int64_t i = beg_idx; i < end_idx; i += BlockDim) {
    d_x_mean_partial += static_cast<U>(d_x[i]);
    d_x_var_partial +=
        static_cast<U>(d_x[i]) * (static_cast<U>(x[i]) - block_mean);
  }

  auto pair =
      BlockReduce(temp_storage)
          .Reduce(PairForLayerNorm<U>(d_x_mean_partial, d_x_var_partial),
                  PairForLayerNormAddFunctor<U>());

  if (threadIdx.x == 0) {
    d_x_reduce_tmp[0] = static_cast<float>(pair.first_) / feature_size;
    d_x_reduce_tmp[1] =
        static_cast<float>(pair.second_) /
        (feature_size * (static_cast<float>(block_var) + epsilon));
  }
  __syncthreads();

  d_x_mean_partial = d_x_reduce_tmp[0];
  d_x_var_partial = d_x_reduce_tmp[1];
  for (int64_t i = beg_idx; i < end_idx; i += BlockDim) {
    d_x[i] -= static_cast<T>(d_x_mean_partial);
    d_x[i] -=
        static_cast<T>((static_cast<U>(x[i]) - block_mean) * d_x_var_partial);
  }
}

// Here, we only calculate d_x
1248 1249 1250 1251 1252 1253
template <typename T, typename U, int BlockDim, bool ScaleBiasWithSameTypeX>
__global__ void LayerNormBackwardGradientOnlyDX(
    const T *x, const T *d_y, T *d_x, const U *mean, const U *var,
    const LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *scale,
    float epsilon, int64_t feature_size) {
  using ScaleBiasT = LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX>;
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
  using BlockReduce = cub::BlockReduce<PairForLayerNorm<U>, BlockDim>;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  __shared__ U d_x_reduce_tmp[2];

  int64_t beg_idx = blockIdx.x * feature_size + threadIdx.x;
  int64_t end_idx = (blockIdx.x + 1) * feature_size;

  U block_mean = mean[blockIdx.x], block_var = var[blockIdx.x];
  U d_x_mean_partial = static_cast<U>(0), d_x_var_partial = static_cast<U>(0);
  for (int64_t i = beg_idx; i < end_idx; i += BlockDim) {
    auto var_val =
        static_cast<U>(real_sqrt(static_cast<float>(block_var) + epsilon));
    if (scale != nullptr) {
      int col_idx = i % feature_size;
1268 1269
      d_x[i] = static_cast<T>(static_cast<U>(d_y[i]) *
                              static_cast<U>(scale[col_idx]) / var_val);
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
    } else {
      d_x[i] = static_cast<T>(static_cast<U>(d_y[i]) / var_val);
    }
    d_x_mean_partial += static_cast<U>(d_x[i]);
    d_x_var_partial +=
        static_cast<U>(d_x[i]) * (static_cast<U>(x[i]) - block_mean);
  }

  auto pair =
      BlockReduce(temp_storage)
          .Reduce(PairForLayerNorm<U>(d_x_mean_partial, d_x_var_partial),
                  PairForLayerNormAddFunctor<U>());

  if (threadIdx.x == 0) {
    d_x_reduce_tmp[0] = static_cast<float>(pair.first_) / feature_size;
    d_x_reduce_tmp[1] =
        static_cast<float>(pair.second_) /
        (feature_size * (static_cast<float>(block_var) + epsilon));
  }
  __syncthreads();

  d_x_mean_partial = d_x_reduce_tmp[0];
  d_x_var_partial = d_x_reduce_tmp[1];
  for (int64_t i = beg_idx; i < end_idx; i += BlockDim) {
    d_x[i] -= static_cast<T>(d_x_mean_partial);
    d_x[i] -=
        static_cast<T>((static_cast<U>(x[i]) - block_mean) * d_x_var_partial);
  }
}

1300
template <typename T, typename U, bool ScaleBiasWithSameTypeX>
1301
__global__ void LayerNormBackwardWhenBatchSizeIsOne(
1302 1303 1304 1305 1306 1307
    const T *x, const T *d_y, T *d_x,
    LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *d_scale,
    LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *d_bias, const U *mean,
    const U *var,
    const LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *scale,
    float epsilon, int64_t feature_size) {
1308
  int64_t idx = threadIdx.x + blockIdx.x * blockDim.x;
1309
  using ScaleBiasT = LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX>;
1310 1311
  if (idx < feature_size) {
    auto var_val =
1312
        static_cast<U>(real_sqrt(static_cast<float>(var[0]) + epsilon));
1313 1314 1315 1316
    if (d_x != nullptr) {
      if (d_scale == nullptr) {
        d_x[idx] = static_cast<T>(static_cast<U>(d_y[idx]) / var_val);
      } else {
1317 1318
        d_x[idx] = static_cast<T>(static_cast<U>(d_y[idx]) *
                                  static_cast<U>(scale[idx]) / var_val);
1319 1320 1321 1322
      }
    }

    if (d_scale != nullptr) {
1323 1324 1325
      d_scale[idx] =
          static_cast<ScaleBiasT>(static_cast<U>(d_y[idx]) *
                                  (static_cast<U>(x[idx]) - mean[0]) / var_val);
1326 1327
    }

1328 1329 1330
    if (d_bias != nullptr) {
      d_bias[idx] = static_cast<ScaleBiasT>(d_y[idx]);
    }
1331 1332 1333
  }
}

1334 1335 1336 1337 1338 1339 1340 1341 1342
template <typename T, typename U, bool ScaleBiasWithSameTypeX = false>
static void LayerNormBackward(
    const T *x, const T *d_y,
    const LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *scale,
    const U *mean, const U *var, T *d_x,
    LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *d_scale,
    LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX> *d_bias, float epsilon,
    int64_t batch_size, int64_t feature_size,
    const platform::CUDADeviceContext &dev_ctx) {
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
  auto stream = dev_ctx.stream();
#ifdef __HIPCC__
  const int kMaxBlockDim = 256;
#else
  const int kMaxBlockDim = 512;
#endif
  const int kMaxBlockNum = 128;
  int gradient_flag = ((d_x != nullptr ? 1 : 0) << 2) |
                      ((d_scale != nullptr ? 1 : 0) << 1) |
                      ((d_bias != nullptr ? 1 : 0));
  if (gradient_flag == 0) return;

  if (batch_size == 1) {
1356 1357 1358 1359
    LayerNormBackwardWhenBatchSizeIsOne<T, U, ScaleBiasWithSameTypeX><<<
        (feature_size + kMaxBlockDim - 1) / kMaxBlockDim, kMaxBlockDim, 0,
        stream>>>(x, d_y, d_x, d_scale, d_bias, mean, var, scale, epsilon,
                  feature_size);
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377

    if (d_x != nullptr) {
      switch (GetDesiredBlockDim(feature_size)) {
        FIXED_BLOCK_DIM_CASE(LayerNormBackwardPostProcessToCalculateDX<
                             T, U, kBlockDim><<<1, kBlockDim, 0, stream>>>(
            x, d_x, mean, var, epsilon, feature_size));
      }
    }
    return;
  }

  auto block_dim = GetDesiredBlockDim(batch_size);
  switch (gradient_flag) {
    case 1:  // d_x == nulptr, d_scale == nullptr, d_bias != nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
            feature_size, kMaxBlockNum,
            LayerNormBackwardGradientScaleOrBias<
1378 1379
                T, U, kBlockDim, false, false,
                ScaleBiasWithSameTypeX><<<block_num, kBlockDim, 0, stream>>>(
1380 1381 1382 1383 1384 1385 1386 1387 1388
                x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon,
                batch_size, feature_size, col_offset));
      }
      break;
    case 2:  // d_x == nullptr, d_scale != nullptr, d_bias == nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
            feature_size, kMaxBlockNum,
            LayerNormBackwardGradientScaleOrBias<
1389 1390
                T, U, kBlockDim, false, true,
                ScaleBiasWithSameTypeX><<<block_num, kBlockDim, 0, stream>>>(
1391 1392 1393 1394 1395 1396 1397 1398 1399
                x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon,
                batch_size, feature_size, col_offset));
      }
      break;
    case 3:  // d_x == nullptr, d_scale != nulptr, d_bias != nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
            feature_size, kMaxBlockNum,
            LayerNormBackwardGradientAll<
1400 1401
                T, U, kBlockDim, false,
                ScaleBiasWithSameTypeX><<<block_num, kBlockDim, 0, stream>>>(
1402 1403 1404 1405 1406 1407 1408 1409
                x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon,
                batch_size, feature_size, col_offset));
      }
      break;
    case 4:  // d_x != nullptr, d_scale == nullptr, d_bias == nullptr
      switch (GetDesiredBlockDim(feature_size)) {
        FIXED_BLOCK_DIM_CASE(
            LayerNormBackwardGradientOnlyDX<
1410 1411
                T, U, kBlockDim,
                ScaleBiasWithSameTypeX><<<batch_size, kBlockDim, 0, stream>>>(
1412 1413 1414 1415 1416 1417 1418 1419
                x, d_y, d_x, mean, var, scale, epsilon, feature_size));
      }
      break;
    case 5:  // d_x != nulptr, d_scale == nullptr, d_bias != nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
            feature_size, kMaxBlockNum,
            LayerNormBackwardGradientScaleOrBias<
1420 1421
                T, U, kBlockDim, true, false,
                ScaleBiasWithSameTypeX><<<block_num, kBlockDim, 0, stream>>>(
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
                x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon,
                batch_size, feature_size, col_offset));
      }
      switch (GetDesiredBlockDim(feature_size)) {
        FIXED_BLOCK_DIM_CASE(
            LayerNormBackwardPostProcessToCalculateDX<
                T, U, kBlockDim><<<batch_size, kBlockDim, 0, stream>>>(
                x, d_x, mean, var, epsilon, feature_size));
      }
      break;
    case 6:  // d_x != nullptr, d_scale != nullptr, d_bias == nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
            feature_size, kMaxBlockNum,
            LayerNormBackwardGradientScaleOrBias<
1437 1438
                T, U, kBlockDim, true, true,
                ScaleBiasWithSameTypeX><<<block_num, kBlockDim, 0, stream>>>(
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
                x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon,
                batch_size, feature_size, col_offset));
      }
      switch (GetDesiredBlockDim(feature_size)) {
        FIXED_BLOCK_DIM_CASE(
            LayerNormBackwardPostProcessToCalculateDX<
                T, U, kBlockDim><<<batch_size, kBlockDim, 0, stream>>>(
                x, d_x, mean, var, epsilon, feature_size));
      }
      break;
    case 7:  // d_x != nullptr, d_scale != nullptr, d_bias != nullptr
    {
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
#ifdef PADDLE_WITH_CUDA
      bool can_call_1024_kernel = false;
      // todo: rule out double type.
      if (feature_size == 1024 && sizeof(T) <= 4) {
        can_call_1024_kernel = true;
      }
      VLOG(6) << "can_call_1024_kernel = " << can_call_1024_kernel;

      if (can_call_1024_kernel) {
        ln_bwd_1024_kernel_driver<
            T, U, LayerNormScaleBiasT<T, U, ScaleBiasWithSameTypeX>>(
            dev_ctx, batch_size, feature_size, epsilon, x, scale, mean, var,
            d_y, d_x, d_scale, d_bias);
      } else {
#endif
        constexpr int VPT = 4;
        constexpr int BDIMX2 = 32;
        constexpr int BDIMY2 = 4;
        dim3 threads2(BDIMX2, BDIMY2, 1);
        constexpr int part_size = BDIMY2 * VPT;
        const dim3 blocks2((feature_size + BDIMX2 - 1) / BDIMX2, part_size, 1);

        auto part_grad_gamma_ptr =
            memory::Alloc(dev_ctx, part_size * feature_size * sizeof(U));
        auto part_grad_beta_ptr =
            memory::Alloc(dev_ctx, part_size * feature_size * sizeof(U));
        U *part_grad_gamma = reinterpret_cast<U *>(part_grad_gamma_ptr->ptr());
        U *part_grad_beta = reinterpret_cast<U *>(part_grad_beta_ptr->ptr());

        LayerNormBackwardPartGradGammaBeta<
            T, U, BDIMX2, BDIMY2, VPT><<<blocks2, threads2, 0, stream>>>(
            d_y, x, batch_size, feature_size, mean, var, epsilon,
            part_grad_gamma,
            part_grad_beta);  // compute part_grad_gamma, beta

        constexpr int BDIMX3 = 32;
        constexpr int BDIMY3 = 8;
        dim3 threads3(BDIMX3, BDIMY3, 1);
        const dim3 blocks3((feature_size + BDIMX2 - 1) / BDIMX2, 1, 1);
        LayerNormBackwardSumGradGammaBeta<
            T, U, BDIMX3, BDIMY3,
            ScaleBiasWithSameTypeX><<<blocks3, threads3, 0, stream>>>(
            part_grad_gamma, part_grad_beta, part_size, batch_size,
            feature_size, d_scale, d_bias);

        constexpr int BDIMX1 = 32;
        constexpr int BDIMY1 = 4;
        dim3 threads1(BDIMX1, BDIMY1, 1);
        LayerNormBackwardComputeGradInput<
            T, U, BDIMX1, BDIMY1,
            ScaleBiasWithSameTypeX><<<batch_size, threads1, 0, stream>>>(
            d_y, x, batch_size, feature_size, mean, var, epsilon, scale, d_x);
#ifdef PADDLE_WITH_CUDA
      }
#endif

1507 1508 1509 1510 1511 1512 1513 1514 1515
      break;
    }
    default:
      break;
  }
}

}  // namespace operators
}  // namespace paddle