batch_norm_op.cc 21.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/batch_norm_op.h"
16

Q
qingqing01 已提交
17
#include <memory>
S
Siddharth Goyal 已提交
18
#include <string>
Q
qingqing01 已提交
19
#include <unordered_map>
20

Y
Yi Wang 已提交
21
#include "paddle/fluid/framework/data_layout.h"
22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
Q
Qiao Longfei 已提交
25

H
hong 已提交
26 27 28
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/infermeta/multiary.h"

Q
Qiao Longfei 已提交
29 30 31
namespace paddle {
namespace operators {

Q
qingqing01 已提交
32
void BatchNormOp::InferShape(framework::InferShapeContext *ctx) const {
33 34 35 36 37 38 39
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Bias"), "Input", "Bias", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Mean"), "Input", "Mean", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Variance"), "Input", "Variance", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "BatchNorm");

Q
qingqing01 已提交
40
  bool is_test = ctx->Attrs().Get<bool>("is_test");
41 42 43
  bool trainable_stats = ctx->Attrs().Get<bool>("trainable_statistics");
  bool test_mode = is_test && (!trainable_stats);
  if (!test_mode) {
44
    OP_INOUT_CHECK(ctx->HasOutput("MeanOut"), "Output", "MeanOut", "BatchNorm");
45 46 47 48 49 50 51
    OP_INOUT_CHECK(
        ctx->HasOutput("VarianceOut"), "Output", "VarianceOut", "BatchNorm");
    OP_INOUT_CHECK(
        ctx->HasOutput("SavedMean"), "Output", "SavedMean", "BatchNorm");
    OP_INOUT_CHECK(ctx->HasOutput("SavedVariance"),
                   "Output",
                   "SavedVariance",
52
                   "BatchNorm");
Q
Qiao Longfei 已提交
53
  }
K
Kexin Zhao 已提交
54

Q
qingqing01 已提交
55
  // make sure Mean/MeanOut and Variance/VarianceOut share memory in Python
56 57
  PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0],
                    ctx->Outputs("MeanOut")[0],
58 59 60
                    platform::errors::InvalidArgument(
                        "Mean and MeanOut should share the same memory"));
  PADDLE_ENFORCE_EQ(
61 62
      ctx->Inputs("Variance")[0],
      ctx->Outputs("VarianceOut")[0],
63 64
      platform::errors::InvalidArgument(
          "Variance and VarianceOut should share the same memory"));
Q
qingqing01 已提交
65 66

  const auto x_dims = ctx->GetInputDim("X");
67 68 69

  for (int i = 0; i < x_dims.size(); i++) {
    PADDLE_ENFORCE_EQ(
70 71
        (x_dims[i] == -1) || (x_dims[i] > 0),
        true,
72 73
        platform::errors::InvalidArgument(
            "Each dimension of input tensor is expected to be -1 or a "
74
            "positive number, but received %d. Input's shape is [%s].",
75 76
            x_dims[i],
            x_dims));
77 78
  }

79 80
  const DataLayout data_layout =
      phi::StringToDataLayout(ctx->Attrs().Get<std::string>("data_layout"));
Q
qingqing01 已提交
81

82 83
  if (ctx->IsRuntime() && ctx->HasInput("MomentumTensor")) {
    auto mom = ctx->Inputs("MomentumTensor");
84 85
    PADDLE_ENFORCE_EQ(mom.size(),
                      1,
86
                      platform::errors::InvalidArgument(
C
ceci3 已提交
87 88 89
                          "The input tensor MomentumTensor's size must be 1"
                          "But received: MomentumTensor's size is [%d]",
                          mom.size()));
90 91
  }

92
  PADDLE_ENFORCE_GE(
93 94
      x_dims.size(),
      2,
K
Kaipeng Deng 已提交
95 96 97 98
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of input "
          "X must greater than or equal to 2. But received: the shape of input "
          "X = [%s], the dimension of input X =[%d]",
99 100
          x_dims,
          x_dims.size()));
101
  PADDLE_ENFORCE_LE(
102 103
      x_dims.size(),
      5,
K
Kaipeng Deng 已提交
104 105 106 107
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of input X "
          "must smaller than or equal to 5. But received: the shape of input X "
          "= [%s], the dimension of input X = [%d]",
108 109
          x_dims,
          x_dims.size()));
110 111
  VLOG(4) << ctx->IsRunMKLDNNKernel();
  VLOG(4) << data_layout;
Q
qingqing01 已提交
112
  const int64_t C =
113
      ((ctx->IsRunMKLDNNKernel() == true) || (data_layout == DataLayout::kNCHW)
114 115
           ? x_dims[1]
           : x_dims[x_dims.size() - 1]);
Q
qingqing01 已提交
116

117 118
  auto scale_dim = ctx->GetInputDim("Scale");
  auto bias_dim = ctx->GetInputDim("Bias");
Q
qingqing01 已提交
119

120
  PADDLE_ENFORCE_EQ(
121 122
      scale_dim.size(),
      1UL,
123 124 125 126
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of scale must equal to 1."
          "But received: the shape of scale is [%s], the dimension "
          "of scale is [%d]",
127 128 129 130
          scale_dim,
          scale_dim.size()));
  PADDLE_ENFORCE_EQ(bias_dim.size(),
                    1UL,
131 132 133 134
                    platform::errors::InvalidArgument(
                        "ShapeError: the dimension of bias must equal to 1."
                        "But received: the shape of bias is [%s],the dimension "
                        "of bias is [%d]",
135 136
                        bias_dim,
                        bias_dim.size()));
C
ceci3 已提交
137

138
  bool check = true;
139
  if ((!ctx->IsRuntime()) &&
140
      (phi::product(scale_dim) <= 0 || phi::product(bias_dim) <= 0)) {
141 142 143 144
    check = false;
  }

  if (check) {
145 146
    PADDLE_ENFORCE_EQ(scale_dim[0],
                      C,
147 148 149
                      platform::errors::InvalidArgument(
                          "ShapeError: the shape of scale must equal to [%d]"
                          "But received: the shape of scale is [%d]",
150 151 152 153
                          C,
                          scale_dim[0]));
    PADDLE_ENFORCE_EQ(bias_dim[0],
                      C,
154 155 156
                      platform::errors::InvalidArgument(
                          "ShapeError: the shape of bias must equal to [%d]"
                          "But received: the shape of bias is [%d]",
157 158
                          C,
                          bias_dim[0]));
159
  }
Q
qingqing01 已提交
160
  ctx->SetOutputDim("Y", x_dims);
161
  VLOG(4) << x_dims;
Q
qingqing01 已提交
162 163 164 165 166
  ctx->SetOutputDim("MeanOut", {C});
  ctx->SetOutputDim("VarianceOut", {C});
  ctx->SetOutputDim("SavedMean", {C});
  ctx->SetOutputDim("SavedVariance", {C});
  ctx->ShareLoD("X", "Y");
167
  if (ctx->HasOutput("ReserveSpace")) {
168 169
    ctx->SetOutputDim("ReserveSpace", {-1});
  }
Q
qingqing01 已提交
170 171 172 173
}

framework::OpKernelType BatchNormOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
174
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
Q
qingqing01 已提交
175 176 177 178 179 180 181
  // By default, the type of the scale, bias, mean,
  // and var tensors should both be float. (For float or float16 input tensor)
  // or double (For double input tensor).
  auto bn_param_type = framework::proto::VarType::FP32;
  if (input_data_type == framework::proto::VarType::FP64) {
    bn_param_type = framework::proto::VarType::FP64;
  }
K
Kaipeng Deng 已提交
182
  PADDLE_ENFORCE_EQ(
183
      bn_param_type,
184 185
      framework::TransToProtoVarType(
          ctx.Input<phi::DenseTensor>("Scale")->dtype()),
K
Kaipeng Deng 已提交
186 187
      platform::errors::InvalidArgument("Scale input should be of float type"));
  PADDLE_ENFORCE_EQ(
188
      bn_param_type,
189 190
      framework::TransToProtoVarType(
          ctx.Input<phi::DenseTensor>("Bias")->dtype()),
K
Kaipeng Deng 已提交
191 192
      platform::errors::InvalidArgument("Bias input should be of float type"));
  PADDLE_ENFORCE_EQ(
193
      bn_param_type,
194 195
      framework::TransToProtoVarType(
          ctx.Input<phi::DenseTensor>("Mean")->dtype()),
K
Kaipeng Deng 已提交
196
      platform::errors::InvalidArgument("Mean input should be of float type"));
197 198 199 200 201
  PADDLE_ENFORCE_EQ(bn_param_type,
                    framework::TransToProtoVarType(
                        ctx.Input<phi::DenseTensor>("Variance")->dtype()),
                    platform::errors::InvalidArgument(
                        "Variance input should be of float type"));
Q
qingqing01 已提交
202

203
  return framework::OpKernelType(input_data_type, ctx.GetPlace());
Q
qingqing01 已提交
204 205
}

206
framework::OpKernelType BatchNormOp::GetKernelTypeForVar(
207 208
    const std::string &var_name,
    const Tensor &tensor,
209 210 211 212 213
    const framework::OpKernelType &expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "X") &&
214 215
      (expected_kernel_type.data_layout_ == phi::DataLayout::ONEDNN) &&
      (tensor.layout() != phi::DataLayout::ONEDNN)) {
216 217 218
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_layout = ar.Get<std::string>("data_layout");
219
    auto dl = phi::StringToDataLayout(data_layout);
220 221
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
222
    if (dl != phi::DataLayout::kAnyLayout) {
223 224
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(), dl);
225 226 227
    }
  }
#endif
228 229
  return framework::OpKernelType(
      expected_kernel_type.data_type_, tensor.place(), tensor.layout());
230 231
}

Q
qingqing01 已提交
232 233 234 235 236 237 238 239 240
void BatchNormOpMaker::Make() {
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
  AddAttr<float>("momentum", "").SetDefault(0.9);
  AddAttr<float>("epsilon", "")
      .SetDefault(1e-5)
      .AddCustomChecker([](const float &epsilon) {
K
Kaipeng Deng 已提交
241
        PADDLE_ENFORCE_GE(
242 243
            epsilon,
            0.0f,
K
Kaipeng Deng 已提交
244 245
            platform::errors::InvalidArgument(
                "'epsilon' should be greater or equal than 0.0."));
246 247
        PADDLE_ENFORCE_LE(epsilon,
                          0.001f,
K
Kaipeng Deng 已提交
248 249
                          platform::errors::InvalidArgument(
                              "'epsilon' should be less or equal than 0.001."));
Q
qingqing01 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
      });
  AddAttr<std::string>("data_layout", "").SetDefault("NCHW");
  AddInput("X", "The input tensor");
  AddInput("Scale",
           "Scale is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Bias",
           "Bias is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Mean",
           "The global mean (for training) or "
           "estimated mean (for testing)");
  AddInput("Variance",
           "The global variance (for training) "
           "or estimated Variance (for testing)");
265 266 267 268 269
  AddInput("MomentumTensor",
           "(Tensor<float32>, optional) If provided, batch_norm will "
           "use this as momentum, this has a higher priority than "
           "attr(momentum), the shape of this tensor MUST BE [1].")
      .AsDispensable();
Q
qingqing01 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
  AddOutput("Y", "result after normalization");
  AddOutput("MeanOut",
            "Share memory with Mean. "
            "Store the global mean when training");
  AddOutput("VarianceOut",
            "Share memory with Variance. "
            "Store the global Variance when training");
  AddOutput("SavedMean",
            "Mean of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
  AddOutput("SavedVariance",
            "Variance of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
285 286 287
  AddOutput("ReserveSpace",
            "Reserve GPU space for triggering the new semi-persistent "
            "NHWC kernel")
C
ceci3 已提交
288 289
      .AsDispensable()
      .AsExtra();
Q
qingqing01 已提交
290 291 292 293 294 295 296 297
  AddAttr<bool>("use_global_stats",
                "(bool, default false) Whether to use global mean and "
                "variance. In inference or test mode, set use_global_stats "
                "to true or is_test true. the behavior is equivalent. "
                "In train mode, when setting use_global_stats True, the "
                "global mean and variance are also used during train time, "
                "the BN acts as scaling and shiffting.")
      .SetDefault(false);
298 299 300 301 302
  AddAttr<bool>("trainable_statistics",
                "(bool, default false) Whether to calculate mean and variance "
                "in test mode. If setting true in test mode, mean and variace "
                "will be calculated by current batch statistics.")
      .SetDefault(false);
Q
qingqing01 已提交
303
  AddComment(R"DOC(
304
Batch Normalization.
Q
Qiao Longfei 已提交
305

306 307 308 309 310 311
Batch Norm has been implemented as discussed in the paper:
https://arxiv.org/pdf/1502.03167.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
Q
Qiao Longfei 已提交
312 313

)DOC");
Q
qingqing01 已提交
314
}
C
chengduo 已提交
315

Q
qingqing01 已提交
316 317
void BatchNormGradOp::InferShape(framework::InferShapeContext *ctx) const {
  // check input
318
  OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", "BatchNormGrad");
319 320 321
  OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")),
                 "Input",
                 framework::GradVarName("Y"),
322
                 "BatchNormGrad");
323 324 325 326 327
  OP_INOUT_CHECK(
      ctx->HasInput("SavedMean"), "Input", "SavedMean", "BatchNormGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedVariance"),
                 "Input",
                 "SavedVariance",
328
                 "BatchNormGrad");
Q
qingqing01 已提交
329 330

  // check output
331 332
  const bool has_scale_grad = ctx->HasOutput(framework::GradVarName("Scale"));
  const bool has_bias_grad = ctx->HasOutput(framework::GradVarName("Bias"));
333
  const bool has_x_grad = ctx->HasOutput(framework::GradVarName("X"));
334

335 336
  PADDLE_ENFORCE_EQ((has_scale_grad == has_bias_grad),
                    true,
337
                    platform::errors::NotFound(
338 339 340
                        "Output(Scale@GRAD) and Output(Bias@GRAD) must be null "
                        "or not be null at same time. But now, "
                        "has Scale@Grad=[%d], has Bias@GRAD=[%d]",
341 342
                        has_scale_grad,
                        has_bias_grad));
343

Q
qingqing01 已提交
344 345
  const bool use_global_stats = ctx->Attrs().Get<bool>("use_global_stats");
  if (use_global_stats) {
K
Kaipeng Deng 已提交
346
    PADDLE_ENFORCE_EQ(
347 348
        !ctx->Attrs().Get<bool>("use_mkldnn"),
        true,
K
Kaipeng Deng 已提交
349 350 351
        platform::errors::InvalidArgument(
            "Using global stats during training is not supported "
            "in gradient op kernel of batch_norm_mkldnn_op now."));
Q
qingqing01 已提交
352
  }
Q
Qiao Longfei 已提交
353

354 355
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BatchNormGrad");
  const auto x_dims = ctx->GetInputDim("X");
356 357
  const DataLayout data_layout =
      phi::StringToDataLayout(ctx->Attrs().Get<std::string>("data_layout"));
Q
Qiao Longfei 已提交
358

359
  const int C =
360
      ((ctx->IsRunMKLDNNKernel() == true) || (data_layout == DataLayout::kNCHW)
361 362 363 364 365 366 367
           ? x_dims[1]
           : x_dims[x_dims.size() - 1]);

  // has_scale_grad == has_bias_grad, judge has_scale_grad is enough
  if (has_scale_grad) {
    ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
    ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
Q
Qiao Longfei 已提交
368
  }
369 370 371
  if (has_x_grad) {
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
  }
Q
qingqing01 已提交
372
}
Q
Qiao Longfei 已提交
373

Q
qingqing01 已提交
374 375 376 377
framework::OpKernelType BatchNormGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar(framework::GradVarName("Y"));
  if (var == nullptr) {
K
Kaipeng Deng 已提交
378 379
    PADDLE_THROW(
        platform::errors::InvalidArgument("can't find gradient variable of Y"));
Q
qingqing01 已提交
380 381 382 383 384 385 386 387
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
K
Kaipeng Deng 已提交
388 389
    PADDLE_THROW(
        platform::errors::InvalidArgument("gradient variable of Y is empty"));
Q
qingqing01 已提交
390
  }
391

392
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
393
  return framework::OpKernelType(data_type, ctx.GetPlace());
Q
qingqing01 已提交
394
}
Q
Qiao Longfei 已提交
395

396
framework::OpKernelType BatchNormGradOp::GetKernelTypeForVar(
397 398
    const std::string &var_name,
    const Tensor &tensor,
399 400 401 402 403
    const framework::OpKernelType &expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "X") || (var_name == framework::GradVarName("Y"))) &&
404 405
      (expected_kernel_type.data_layout_ == phi::DataLayout::ONEDNN) &&
      (tensor.layout() != phi::DataLayout::ONEDNN)) {
406 407 408
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_layout = ar.Get<std::string>("data_layout");
409
    auto dl = phi::StringToDataLayout(data_layout);
410 411
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
412
    if (dl != phi::DataLayout::kAnyLayout) {
413 414
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(), dl);
415 416 417
    }
  }
#endif
418 419
  return framework::OpKernelType(
      expected_kernel_type.data_type_, tensor.place(), tensor.layout());
420 421
}

H
hong 已提交
422
template <typename T>
423
void BatchNormGradMaker<T>::Apply(GradOpPtr<T> op) const {
424 425 426 427 428 429 430 431
  op->SetType(this->ForwardOpType() + "_grad");
  op->SetInput("X", this->Input("X"));
  op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));

  op->SetInput("Scale", this->Input("Scale"));
  op->SetInput("Bias", this->Input("Bias"));
  op->SetInput("SavedMean", this->Output("SavedMean"));
  op->SetInput("SavedVariance", this->Output("SavedVariance"));
432 433 434
  if (this->HasOutput("ReserveSpace")) {
    op->SetInput("ReserveSpace", this->Output("ReserveSpace"));
  }
435 436

  // used when setting use_global_stats True during training
R
Ruibiao Chen 已提交
437 438
  if (PADDLE_GET_CONST(bool, this->GetAttr("use_global_stats")) ||
      PADDLE_GET_CONST(bool, this->GetAttr("is_test"))) {
439 440 441
    op->SetInput("Mean", this->Output("MeanOut"));
    op->SetInput("Variance", this->Output("VarianceOut"));
  }
442

443
  op->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
444

445 446 447 448
  op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
  op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
  op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
}
Y
Yu Yang 已提交
449

450 451 452 453 454 455 456
template <typename T>
void BatchNormDoubleGradMaker<T>::Apply(GradOpPtr<T> op) const {
  op->SetType("batch_norm_grad_grad");
  op->SetInput("X", this->Input("X"));
  op->SetInput("Scale", this->Input("Scale"));
  op->SetInput("SavedMean", this->Input("SavedMean"));
  op->SetInput("SavedVariance", this->Input("SavedVariance"));
R
Ruibiao Chen 已提交
457
  if (PADDLE_GET_CONST(bool, this->GetAttr("use_global_stats"))) {
458
    op->SetInput("Mean", this->Input("Mean"));
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
    op->SetInput("Variance", this->Input("Variance"));
  }
  op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
  op->SetInput("DDScale", this->OutputGrad(framework::GradVarName("Scale")));
  op->SetInput("DDBias", this->OutputGrad(framework::GradVarName("Bias")));
  op->SetInput("DY", this->Input(framework::GradVarName("Y")));

  op->SetAttrMap(this->Attrs());
  op->SetOutput("DX", this->InputGrad("X"));
  op->SetOutput("DScale", this->InputGrad("Scale"));
  op->SetOutput("DDY", this->InputGrad(framework::GradVarName("Y")));
}

void BatchNormDoubleGradOp::InferShape(
    framework::InferShapeContext *ctx) const {
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BatchNormDoubleGrad");
475 476 477 478 479 480 481
  OP_INOUT_CHECK(
      ctx->HasInput("Scale"), "Input", "Scale", "BatchNormDoubleGrad");
  OP_INOUT_CHECK(
      ctx->HasInput("SavedMean"), "Input", "SavedMean", "BatchNormDoubleGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedVariance"),
                 "Input",
                 "SavedVariance",
482 483 484 485
                 "BatchNormDoubleGrad");

  const bool use_global_stats = ctx->Attrs().Get<bool>("use_global_stats");
  if (use_global_stats) {
486 487 488
    OP_INOUT_CHECK(ctx->HasInput("Variance"),
                   "Input",
                   "VarianceOut",
489 490 491 492 493 494 495 496 497
                   "BatchNormDoubleGrad");
  }

  OP_INOUT_CHECK(ctx->HasInput("DY"), "Input", "DY", "BatchNormDoubleGrad");

  // check output
  OP_INOUT_CHECK(ctx->HasOutput("DX"), "Output", "DX", "BatchNormDoubleGrad");

  const auto x_dims = ctx->GetInputDim("X");
498 499
  const DataLayout data_layout =
      phi::StringToDataLayout(ctx->Attrs().Get<std::string>("data_layout"));
500
  const int C =
501
      ((ctx->IsRunMKLDNNKernel() == true) || (data_layout == DataLayout::kNCHW)
502 503 504
           ? x_dims[1]
           : x_dims[x_dims.size() - 1]);

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
  if (ctx->HasOutput("DX")) {
    ctx->SetOutputDim("DX", x_dims);
  }
  if (ctx->HasOutput("DScale")) {
    ctx->SetOutputDim("DScale", {C});
  }
  if (ctx->HasOutput("DDY")) {
    ctx->ShareDim("X", "DDY");
  }
}

framework::OpKernelType BatchNormDoubleGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar("DY");
  if (var == nullptr) {
    PADDLE_THROW(
        platform::errors::NotFound("cannot find gradient variable of Y"));
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
    PADDLE_THROW(
        platform::errors::InvalidArgument("gradient variable of Y is empty"));
  }
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
}

DECLARE_INPLACE_OP_INFERER(BatchNormDoubleGradOpInplaceInferer, {"DY", "DDY"});

Q
Qiao Longfei 已提交
539 540 541 542
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
543

544 545
DECLARE_INFER_SHAPE_FUNCTOR(batch_norm,
                            BatchNormInferShapeFunctor,
H
hong 已提交
546 547
                            PD_INFER_META(phi::BatchNormInferMeta));

548 549 550
REGISTER_OPERATOR(batch_norm,
                  ops::BatchNormOp,
                  ops::BatchNormOpMaker,
H
hong 已提交
551 552 553
                  ops::BatchNormOpInferVarType,
                  ops::BatchNormGradMaker<paddle::framework::OpDesc>,
                  ops::BatchNormGradMaker<paddle::imperative::OpBase>);
554 555
REGISTER_OPERATOR(batch_norm_grad,
                  ops::BatchNormGradOp,
556 557
                  ops::BatchNormDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::BatchNormDoubleGradMaker<paddle::imperative::OpBase>);
558 559
REGISTER_OPERATOR(batch_norm_grad_grad,
                  ops::BatchNormDoubleGradOp,
560
                  ops::BatchNormDoubleGradOpInplaceInferer);