batch_norm_op.cc 22.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/batch_norm_op.h"
16

Q
qingqing01 已提交
17
#include <memory>
S
Siddharth Goyal 已提交
18
#include <string>
Q
qingqing01 已提交
19
#include <unordered_map>
20

Y
Yi Wang 已提交
21
#include "paddle/fluid/framework/data_layout.h"
22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
Q
Qiao Longfei 已提交
25

H
hong 已提交
26 27 28
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/infermeta/multiary.h"

Q
Qiao Longfei 已提交
29 30 31
namespace paddle {
namespace operators {

Q
qingqing01 已提交
32
void BatchNormOp::InferShape(framework::InferShapeContext *ctx) const {
33 34 35 36 37 38 39
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Bias"), "Input", "Bias", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Mean"), "Input", "Mean", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Variance"), "Input", "Variance", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "BatchNorm");

Q
qingqing01 已提交
40
  bool is_test = ctx->Attrs().Get<bool>("is_test");
41 42 43
  bool trainable_stats = ctx->Attrs().Get<bool>("trainable_statistics");
  bool test_mode = is_test && (!trainable_stats);
  if (!test_mode) {
44 45 46 47 48 49 50
    OP_INOUT_CHECK(ctx->HasOutput("MeanOut"), "Output", "MeanOut", "BatchNorm");
    OP_INOUT_CHECK(ctx->HasOutput("VarianceOut"), "Output", "VarianceOut",
                   "BatchNorm");
    OP_INOUT_CHECK(ctx->HasOutput("SavedMean"), "Output", "SavedMean",
                   "BatchNorm");
    OP_INOUT_CHECK(ctx->HasOutput("SavedVariance"), "Output", "SavedVariance",
                   "BatchNorm");
Q
Qiao Longfei 已提交
51
  }
K
Kexin Zhao 已提交
52

Q
qingqing01 已提交
53 54
  // make sure Mean/MeanOut and Variance/VarianceOut share memory in Python
  PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0], ctx->Outputs("MeanOut")[0],
55 56 57 58 59 60
                    platform::errors::InvalidArgument(
                        "Mean and MeanOut should share the same memory"));
  PADDLE_ENFORCE_EQ(
      ctx->Inputs("Variance")[0], ctx->Outputs("VarianceOut")[0],
      platform::errors::InvalidArgument(
          "Variance and VarianceOut should share the same memory"));
Q
qingqing01 已提交
61 62

  const auto x_dims = ctx->GetInputDim("X");
63 64 65 66 67 68

  for (int i = 0; i < x_dims.size(); i++) {
    PADDLE_ENFORCE_EQ(
        (x_dims[i] == -1) || (x_dims[i] > 0), true,
        platform::errors::InvalidArgument(
            "Each dimension of input tensor is expected to be -1 or a "
69
            "positive number, but received %d. Input's shape is [%s].",
70 71 72
            x_dims[i], x_dims));
  }

Q
qingqing01 已提交
73 74 75
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));

76 77 78 79
  if (ctx->IsRuntime() && ctx->HasInput("MomentumTensor")) {
    auto mom = ctx->Inputs("MomentumTensor");
    PADDLE_ENFORCE_EQ(mom.size(), 1,
                      platform::errors::InvalidArgument(
C
ceci3 已提交
80 81 82
                          "The input tensor MomentumTensor's size must be 1"
                          "But received: MomentumTensor's size is [%d]",
                          mom.size()));
83 84
  }

85 86
  PADDLE_ENFORCE_GE(
      x_dims.size(), 2,
K
Kaipeng Deng 已提交
87 88 89 90 91
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of input "
          "X must greater than or equal to 2. But received: the shape of input "
          "X = [%s], the dimension of input X =[%d]",
          x_dims, x_dims.size()));
92 93
  PADDLE_ENFORCE_LE(
      x_dims.size(), 5,
K
Kaipeng Deng 已提交
94 95 96 97 98
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of input X "
          "must smaller than or equal to 5. But received: the shape of input X "
          "= [%s], the dimension of input X = [%d]",
          x_dims, x_dims.size()));
99 100
  VLOG(4) << ctx->IsRunMKLDNNKernel();
  VLOG(4) << data_layout;
Q
qingqing01 已提交
101
  const int64_t C =
102
      ((ctx->IsRunMKLDNNKernel() == true) || (data_layout == DataLayout::kNCHW)
103 104
           ? x_dims[1]
           : x_dims[x_dims.size() - 1]);
Q
qingqing01 已提交
105

106 107
  auto scale_dim = ctx->GetInputDim("Scale");
  auto bias_dim = ctx->GetInputDim("Bias");
Q
qingqing01 已提交
108

109
  PADDLE_ENFORCE_EQ(
110 111 112 113 114 115 116 117 118 119 120 121
      scale_dim.size(), 1UL,
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of scale must equal to 1."
          "But received: the shape of scale is [%s], the dimension "
          "of scale is [%d]",
          scale_dim, scale_dim.size()));
  PADDLE_ENFORCE_EQ(bias_dim.size(), 1UL,
                    platform::errors::InvalidArgument(
                        "ShapeError: the dimension of bias must equal to 1."
                        "But received: the shape of bias is [%s],the dimension "
                        "of bias is [%d]",
                        bias_dim, bias_dim.size()));
C
ceci3 已提交
122

123
  bool check = true;
124
  if ((!ctx->IsRuntime()) &&
125
      (phi::product(scale_dim) <= 0 || phi::product(bias_dim) <= 0)) {
126 127 128 129
    check = false;
  }

  if (check) {
130
    PADDLE_ENFORCE_EQ(scale_dim[0], C,
131 132 133 134
                      platform::errors::InvalidArgument(
                          "ShapeError: the shape of scale must equal to [%d]"
                          "But received: the shape of scale is [%d]",
                          C, scale_dim[0]));
135
    PADDLE_ENFORCE_EQ(bias_dim[0], C,
136 137 138 139
                      platform::errors::InvalidArgument(
                          "ShapeError: the shape of bias must equal to [%d]"
                          "But received: the shape of bias is [%d]",
                          C, bias_dim[0]));
140
  }
Q
qingqing01 已提交
141
  ctx->SetOutputDim("Y", x_dims);
142
  VLOG(4) << x_dims;
Q
qingqing01 已提交
143 144 145 146 147 148 149 150 151
  ctx->SetOutputDim("MeanOut", {C});
  ctx->SetOutputDim("VarianceOut", {C});
  ctx->SetOutputDim("SavedMean", {C});
  ctx->SetOutputDim("SavedVariance", {C});
  ctx->ShareLoD("X", "Y");
}

framework::OpKernelType BatchNormOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
152
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
Q
qingqing01 已提交
153 154 155 156 157 158 159
  // By default, the type of the scale, bias, mean,
  // and var tensors should both be float. (For float or float16 input tensor)
  // or double (For double input tensor).
  auto bn_param_type = framework::proto::VarType::FP32;
  if (input_data_type == framework::proto::VarType::FP64) {
    bn_param_type = framework::proto::VarType::FP64;
  }
K
Kaipeng Deng 已提交
160
  PADDLE_ENFORCE_EQ(
161 162
      bn_param_type,
      framework::TransToProtoVarType(ctx.Input<Tensor>("Scale")->dtype()),
K
Kaipeng Deng 已提交
163 164
      platform::errors::InvalidArgument("Scale input should be of float type"));
  PADDLE_ENFORCE_EQ(
165 166
      bn_param_type,
      framework::TransToProtoVarType(ctx.Input<Tensor>("Bias")->dtype()),
K
Kaipeng Deng 已提交
167 168
      platform::errors::InvalidArgument("Bias input should be of float type"));
  PADDLE_ENFORCE_EQ(
169 170
      bn_param_type,
      framework::TransToProtoVarType(ctx.Input<Tensor>("Mean")->dtype()),
K
Kaipeng Deng 已提交
171
      platform::errors::InvalidArgument("Mean input should be of float type"));
172 173 174 175 176
  PADDLE_ENFORCE_EQ(
      bn_param_type,
      framework::TransToProtoVarType(ctx.Input<Tensor>("Variance")->dtype()),
      platform::errors::InvalidArgument(
          "Variance input should be of float type"));
Q
qingqing01 已提交
177 178 179 180

  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
181
#ifdef PADDLE_WITH_MKLDNN
182 183
  if (library == framework::LibraryType::kPlain &&
      this->CanMKLDNNBeUsed(ctx, input_data_type)) {
Q
qingqing01 已提交
184 185
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
K
Kexin Zhao 已提交
186
  }
Q
qingqing01 已提交
187
#endif
Q
Qiao Longfei 已提交
188

Q
qingqing01 已提交
189 190 191 192
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                 library);
}

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
framework::OpKernelType BatchNormOp::GetKernelTypeForVar(
    const std::string &var_name, const Tensor &tensor,
    const framework::OpKernelType &expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "X") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_layout = ar.Get<std::string>("data_layout");
    auto dl = framework::StringToDataLayout(data_layout);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
209 210
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
211 212 213 214 215 216 217
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Q
qingqing01 已提交
218 219 220 221 222 223 224 225 226
void BatchNormOpMaker::Make() {
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
  AddAttr<float>("momentum", "").SetDefault(0.9);
  AddAttr<float>("epsilon", "")
      .SetDefault(1e-5)
      .AddCustomChecker([](const float &epsilon) {
K
Kaipeng Deng 已提交
227 228 229 230 231 232 233
        PADDLE_ENFORCE_GE(
            epsilon, 0.0f,
            platform::errors::InvalidArgument(
                "'epsilon' should be greater or equal than 0.0."));
        PADDLE_ENFORCE_LE(epsilon, 0.001f,
                          platform::errors::InvalidArgument(
                              "'epsilon' should be less or equal than 0.001."));
Q
qingqing01 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
      });
  AddAttr<std::string>("data_layout", "").SetDefault("NCHW");
  AddInput("X", "The input tensor");
  AddInput("Scale",
           "Scale is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Bias",
           "Bias is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Mean",
           "The global mean (for training) or "
           "estimated mean (for testing)");
  AddInput("Variance",
           "The global variance (for training) "
           "or estimated Variance (for testing)");
249 250 251 252 253
  AddInput("MomentumTensor",
           "(Tensor<float32>, optional) If provided, batch_norm will "
           "use this as momentum, this has a higher priority than "
           "attr(momentum), the shape of this tensor MUST BE [1].")
      .AsDispensable();
Q
qingqing01 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
  AddOutput("Y", "result after normalization");
  AddOutput("MeanOut",
            "Share memory with Mean. "
            "Store the global mean when training");
  AddOutput("VarianceOut",
            "Share memory with Variance. "
            "Store the global Variance when training");
  AddOutput("SavedMean",
            "Mean of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
  AddOutput("SavedVariance",
            "Variance of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
269 270 271
  AddOutput("ReserveSpace",
            "Reserve GPU space for triggering the new semi-persistent "
            "NHWC kernel")
C
ceci3 已提交
272 273
      .AsDispensable()
      .AsExtra();
Q
qingqing01 已提交
274 275
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
C
ceci3 已提交
276 277
      .SetDefault(false)
      .AsExtra();
Q
qingqing01 已提交
278 279
  AddAttr<bool>("fuse_with_relu",
                "(bool, default false) Only used in mkldnn kernel")
C
ceci3 已提交
280 281
      .SetDefault(false)
      .AsExtra();
Q
qingqing01 已提交
282 283 284 285 286 287 288 289
  AddAttr<bool>("use_global_stats",
                "(bool, default false) Whether to use global mean and "
                "variance. In inference or test mode, set use_global_stats "
                "to true or is_test true. the behavior is equivalent. "
                "In train mode, when setting use_global_stats True, the "
                "global mean and variance are also used during train time, "
                "the BN acts as scaling and shiffting.")
      .SetDefault(false);
290 291 292 293 294
  AddAttr<bool>("trainable_statistics",
                "(bool, default false) Whether to calculate mean and variance "
                "in test mode. If setting true in test mode, mean and variace "
                "will be calculated by current batch statistics.")
      .SetDefault(false);
Q
qingqing01 已提交
295
  AddComment(R"DOC(
296
Batch Normalization.
Q
Qiao Longfei 已提交
297

298 299 300 301 302 303
Batch Norm has been implemented as discussed in the paper:
https://arxiv.org/pdf/1502.03167.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
Q
Qiao Longfei 已提交
304 305

)DOC");
Q
qingqing01 已提交
306
}
C
chengduo 已提交
307

Q
qingqing01 已提交
308 309
void BatchNormGradOp::InferShape(framework::InferShapeContext *ctx) const {
  // check input
310 311 312 313 314 315 316
  OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", "BatchNormGrad");
  OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input",
                 framework::GradVarName("Y"), "BatchNormGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedMean"), "Input", "SavedMean",
                 "BatchNormGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedVariance"), "Input", "SavedVariance",
                 "BatchNormGrad");
Q
qingqing01 已提交
317 318

  // check output
319 320
  const bool has_scale_grad = ctx->HasOutput(framework::GradVarName("Scale"));
  const bool has_bias_grad = ctx->HasOutput(framework::GradVarName("Bias"));
321
  const bool has_x_grad = ctx->HasOutput(framework::GradVarName("X"));
322 323

  PADDLE_ENFORCE_EQ((has_scale_grad == has_bias_grad), true,
324
                    platform::errors::NotFound(
325 326 327 328 329
                        "Output(Scale@GRAD) and Output(Bias@GRAD) must be null "
                        "or not be null at same time. But now, "
                        "has Scale@Grad=[%d], has Bias@GRAD=[%d]",
                        has_scale_grad, has_bias_grad));

Q
qingqing01 已提交
330 331
  const bool use_global_stats = ctx->Attrs().Get<bool>("use_global_stats");
  if (use_global_stats) {
K
Kaipeng Deng 已提交
332 333 334 335 336
    PADDLE_ENFORCE_EQ(
        !ctx->Attrs().Get<bool>("use_mkldnn"), true,
        platform::errors::InvalidArgument(
            "Using global stats during training is not supported "
            "in gradient op kernel of batch_norm_mkldnn_op now."));
Q
qingqing01 已提交
337
  }
Q
Qiao Longfei 已提交
338

339 340 341 342
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BatchNormGrad");
  const auto x_dims = ctx->GetInputDim("X");
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));
Q
Qiao Longfei 已提交
343

344
  const int C =
345
      ((ctx->IsRunMKLDNNKernel() == true) || (data_layout == DataLayout::kNCHW)
346 347 348 349 350 351 352
           ? x_dims[1]
           : x_dims[x_dims.size() - 1]);

  // has_scale_grad == has_bias_grad, judge has_scale_grad is enough
  if (has_scale_grad) {
    ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
    ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
Q
Qiao Longfei 已提交
353
  }
354 355 356
  if (has_x_grad) {
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
  }
Q
qingqing01 已提交
357
}
Q
Qiao Longfei 已提交
358

Q
qingqing01 已提交
359 360 361 362
framework::OpKernelType BatchNormGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar(framework::GradVarName("Y"));
  if (var == nullptr) {
K
Kaipeng Deng 已提交
363 364
    PADDLE_THROW(
        platform::errors::InvalidArgument("can't find gradient variable of Y"));
Q
qingqing01 已提交
365 366 367 368 369 370 371 372
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
K
Kaipeng Deng 已提交
373 374
    PADDLE_THROW(
        platform::errors::InvalidArgument("gradient variable of Y is empty"));
Q
qingqing01 已提交
375
  }
376

Q
qingqing01 已提交
377 378 379
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
380
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
381

382
#ifdef PADDLE_WITH_MKLDNN
383 384
  if (library == framework::LibraryType::kPlain &&
      this->CanMKLDNNBeUsed(ctx, data_type)) {
Q
qingqing01 已提交
385 386 387
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
  }
388
#endif
389

390
  return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
Q
qingqing01 已提交
391
}
Q
Qiao Longfei 已提交
392

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
framework::OpKernelType BatchNormGradOp::GetKernelTypeForVar(
    const std::string &var_name, const Tensor &tensor,
    const framework::OpKernelType &expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "X") || (var_name == framework::GradVarName("Y"))) &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_layout = ar.Get<std::string>("data_layout");
    auto dl = framework::StringToDataLayout(data_layout);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

H
hong 已提交
418
template <typename T>
419
void BatchNormGradMaker<T>::Apply(GradOpPtr<T> op) const {
420 421 422 423 424 425 426 427
  op->SetType(this->ForwardOpType() + "_grad");
  op->SetInput("X", this->Input("X"));
  op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));

  op->SetInput("Scale", this->Input("Scale"));
  op->SetInput("Bias", this->Input("Bias"));
  op->SetInput("SavedMean", this->Output("SavedMean"));
  op->SetInput("SavedVariance", this->Output("SavedVariance"));
428 429 430
  if (this->HasOutput("ReserveSpace")) {
    op->SetInput("ReserveSpace", this->Output("ReserveSpace"));
  }
431 432

  // used when setting use_global_stats True during training
433 434
  if (BOOST_GET_CONST(bool, this->GetAttr("use_global_stats")) ||
      BOOST_GET_CONST(bool, this->GetAttr("is_test"))) {
435 436 437
    op->SetInput("Mean", this->Output("MeanOut"));
    op->SetInput("Variance", this->Output("VarianceOut"));
  }
438

439
  op->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
440

441 442 443 444
  op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
  op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
  op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
}
Y
Yu Yang 已提交
445

446 447 448 449 450 451 452 453
template <typename T>
void BatchNormDoubleGradMaker<T>::Apply(GradOpPtr<T> op) const {
  op->SetType("batch_norm_grad_grad");
  op->SetInput("X", this->Input("X"));
  op->SetInput("Scale", this->Input("Scale"));
  op->SetInput("SavedMean", this->Input("SavedMean"));
  op->SetInput("SavedVariance", this->Input("SavedVariance"));
  if (BOOST_GET_CONST(bool, this->GetAttr("use_global_stats"))) {
454
    op->SetInput("Mean", this->Input("Mean"));
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
    op->SetInput("Variance", this->Input("Variance"));
  }
  op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
  op->SetInput("DDScale", this->OutputGrad(framework::GradVarName("Scale")));
  op->SetInput("DDBias", this->OutputGrad(framework::GradVarName("Bias")));
  op->SetInput("DY", this->Input(framework::GradVarName("Y")));

  op->SetAttrMap(this->Attrs());
  op->SetOutput("DX", this->InputGrad("X"));
  op->SetOutput("DScale", this->InputGrad("Scale"));
  op->SetOutput("DDY", this->InputGrad(framework::GradVarName("Y")));
}

void BatchNormDoubleGradOp::InferShape(
    framework::InferShapeContext *ctx) const {
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BatchNormDoubleGrad");
  OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale",
                 "BatchNormDoubleGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedMean"), "Input", "SavedMean",
                 "BatchNormDoubleGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedVariance"), "Input", "SavedVariance",
                 "BatchNormDoubleGrad");

  const bool use_global_stats = ctx->Attrs().Get<bool>("use_global_stats");
  if (use_global_stats) {
    OP_INOUT_CHECK(ctx->HasInput("Variance"), "Input", "VarianceOut",
                   "BatchNormDoubleGrad");
  }

  OP_INOUT_CHECK(ctx->HasInput("DY"), "Input", "DY", "BatchNormDoubleGrad");

  // check output
  OP_INOUT_CHECK(ctx->HasOutput("DX"), "Output", "DX", "BatchNormDoubleGrad");

  const auto x_dims = ctx->GetInputDim("X");
490 491 492
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));
  const int C =
493
      ((ctx->IsRunMKLDNNKernel() == true) || (data_layout == DataLayout::kNCHW)
494 495 496
           ? x_dims[1]
           : x_dims[x_dims.size() - 1]);

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
  if (ctx->HasOutput("DX")) {
    ctx->SetOutputDim("DX", x_dims);
  }
  if (ctx->HasOutput("DScale")) {
    ctx->SetOutputDim("DScale", {C});
  }
  if (ctx->HasOutput("DDY")) {
    ctx->ShareDim("X", "DDY");
  }
}

framework::OpKernelType BatchNormDoubleGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar("DY");
  if (var == nullptr) {
    PADDLE_THROW(
        platform::errors::NotFound("cannot find gradient variable of Y"));
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
    PADDLE_THROW(
        platform::errors::InvalidArgument("gradient variable of Y is empty"));
  }
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
}

DECLARE_INPLACE_OP_INFERER(BatchNormDoubleGradOpInplaceInferer, {"DY", "DDY"});

Q
Qiao Longfei 已提交
531 532 533 534
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
535 536 537 538

DECLARE_INFER_SHAPE_FUNCTOR(batch_norm, BatchNormInferShapeFunctor,
                            PD_INFER_META(phi::BatchNormInferMeta));

Y
Yu Yang 已提交
539
REGISTER_OPERATOR(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker,
H
hong 已提交
540 541 542
                  ops::BatchNormOpInferVarType,
                  ops::BatchNormGradMaker<paddle::framework::OpDesc>,
                  ops::BatchNormGradMaker<paddle::imperative::OpBase>);
543 544 545 546 547
REGISTER_OPERATOR(batch_norm_grad, ops::BatchNormGradOp,
                  ops::BatchNormDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::BatchNormDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(batch_norm_grad_grad, ops::BatchNormDoubleGradOp,
                  ops::BatchNormDoubleGradOpInplaceInferer);