test_model.py 18.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# copyright (c) 2020 paddlepaddle authors. all rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import unittest

import os
import numpy as np
import shutil
import tempfile

from paddle import fluid
26
from paddle.nn import Conv2d, Pool2D, Linear, ReLU, Sequential, Softmax
27 28
from paddle.fluid.dygraph.base import to_variable

29 30
import paddle.incubate.hapi as hapi
from paddle.incubate.hapi import Model, Input
31
from paddle.nn.layer.loss import CrossEntropyLoss
32
from paddle.metric import Accuracy
33 34 35
from paddle.incubate.hapi.datasets import MNIST
from paddle.incubate.hapi.vision.models import LeNet
from paddle.incubate.hapi.distributed import DistributedBatchSampler, prepare_distributed_context
36 37
from paddle.fluid.dygraph.jit import declarative
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator
38 39 40


class LeNetDygraph(fluid.dygraph.Layer):
41
    def __init__(self, num_classes=10, classifier_activation=None):
42 43 44
        super(LeNetDygraph, self).__init__()
        self.num_classes = num_classes
        self.features = Sequential(
45
            Conv2d(
46
                1, 6, 3, stride=1, padding=1),
L
LielinJiang 已提交
47
            ReLU(),
48
            Pool2D(2, 'max', 2),
49
            Conv2d(
50
                6, 16, 5, stride=1, padding=0),
L
LielinJiang 已提交
51
            ReLU(),
52 53 54 55
            Pool2D(2, 'max', 2))

        if num_classes > 0:
            self.fc = Sequential(
56 57
                Linear(400, 120), Linear(120, 84), Linear(84, 10),
                Softmax())  #Todo: accept any activation
58 59 60 61 62 63 64 65 66 67

    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
            x = fluid.layers.flatten(x, 1)
            x = self.fc(x)
        return x


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
class LeNetDeclarative(fluid.dygraph.Layer):
    def __init__(self, num_classes=10, classifier_activation=None):
        super(LeNetDeclarative, self).__init__()
        self.num_classes = num_classes
        self.features = Sequential(
            Conv2d(
                1, 6, 3, stride=1, padding=1),
            ReLU(),
            Pool2D(2, 'max', 2),
            Conv2d(
                6, 16, 5, stride=1, padding=0),
            ReLU(),
            Pool2D(2, 'max', 2))

        if num_classes > 0:
            self.fc = Sequential(
84 85
                Linear(400, 120), Linear(120, 84), Linear(84, 10),
                Softmax())  #Todo: accept any activation
86 87 88 89 90 91 92 93 94 95 96

    @declarative
    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
            x = fluid.layers.flatten(x, 1)
            x = self.fc(x)
        return x


97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
class MnistDataset(MNIST):
    def __init__(self, mode, return_label=True, sample_num=None):
        super(MnistDataset, self).__init__(mode=mode)
        self.return_label = return_label
        if sample_num:
            self.images = self.images[:sample_num]
            self.labels = self.labels[:sample_num]

    def __getitem__(self, idx):
        img, label = self.images[idx], self.labels[idx]
        img = np.reshape(img, [1, 28, 28])
        if self.return_label:
            return img, np.array(self.labels[idx]).astype('int64')
        return img,

    def __len__(self):
        return len(self.images)


def compute_acc(pred, label):
    pred = np.argmax(pred, -1)
    label = np.array(label)
    correct = pred[:, np.newaxis] == label
    return np.sum(correct) / correct.shape[0]


def dynamic_train(model, dataloader):
    optim = fluid.optimizer.Adam(
        learning_rate=0.001, parameter_list=model.parameters())
    model.train()
    for inputs, labels in dataloader:
        outputs = model(inputs)
129
        loss = CrossEntropyLoss(reduction="sum")(outputs, labels)
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
        avg_loss = fluid.layers.reduce_sum(loss)
        avg_loss.backward()
        optim.minimize(avg_loss)
        model.clear_gradients()


def dynamic_evaluate(model, dataloader):
    with fluid.dygraph.no_grad():
        model.eval()
        cnt = 0
        for inputs, labels in dataloader:
            outputs = model(inputs)

            cnt += (np.argmax(outputs.numpy(), -1)[:, np.newaxis] ==
                    labels.numpy()).astype('int').sum()

    return cnt / len(dataloader.dataset)


@unittest.skipIf(not fluid.is_compiled_with_cuda(),
                 'CPU testing is not supported')
class TestModel(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        if not fluid.is_compiled_with_cuda():
            self.skipTest('module not tested when ONLY_CPU compling')
156
        cls.device = hapi.set_device('gpu')
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
        fluid.enable_dygraph(cls.device)

        sp_num = 1280
        cls.train_dataset = MnistDataset(mode='train', sample_num=sp_num)
        cls.val_dataset = MnistDataset(mode='test', sample_num=sp_num)
        cls.test_dataset = MnistDataset(
            mode='test', return_label=False, sample_num=sp_num)

        cls.train_loader = fluid.io.DataLoader(
            cls.train_dataset, places=cls.device, batch_size=64)
        cls.val_loader = fluid.io.DataLoader(
            cls.val_dataset, places=cls.device, batch_size=64)
        cls.test_loader = fluid.io.DataLoader(
            cls.test_dataset, places=cls.device, batch_size=64)

        seed = 333
        fluid.default_startup_program().random_seed = seed
        fluid.default_main_program().random_seed = seed

        dy_lenet = LeNetDygraph()
        cls.init_param = dy_lenet.state_dict()
        dynamic_train(dy_lenet, cls.train_loader)

        cls.acc1 = dynamic_evaluate(dy_lenet, cls.val_loader)

182 183
        cls.inputs = [Input([-1, 1, 28, 28], 'float32', 'image')]
        cls.labels = [Input([None, 1], 'int64', 'label')]
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

        cls.save_dir = tempfile.mkdtemp()
        cls.weight_path = os.path.join(cls.save_dir, 'lenet')
        fluid.dygraph.save_dygraph(dy_lenet.state_dict(), cls.weight_path)

        fluid.disable_dygraph()

    @classmethod
    def tearDownClass(cls):
        shutil.rmtree(cls.save_dir)

    def test_fit_dygraph(self):
        self.fit(True)

    def test_fit_static(self):
        self.fit(False)

201 202 203 204 205 206
    def test_fit_dynamic_with_rank(self):
        self.fit(True, 2, 0)

    def test_fit_static_with_rank(self):
        self.fit(False, 2, 0)

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    def test_evaluate_dygraph(self):
        self.evaluate(True)

    def test_evaluate_static(self):
        self.evaluate(False)

    def test_predict_dygraph(self):
        self.predict(True)

    def test_predict_static(self):
        self.predict(False)

    def test_prepare_context(self):
        prepare_distributed_context()

222
    def fit(self, dynamic, num_replicas=None, rank=None):
223 224 225 226 227
        fluid.enable_dygraph(self.device) if dynamic else None
        seed = 333
        fluid.default_startup_program().random_seed = seed
        fluid.default_main_program().random_seed = seed

228
        net = LeNet(classifier_activation=None)
229
        optim_new = fluid.optimizer.Adam(
230 231
            learning_rate=0.001, parameter_list=net.parameters())
        model = Model(net, inputs=self.inputs, labels=self.labels)
232 233
        model.prepare(
            optim_new,
234
            loss=CrossEntropyLoss(reduction="sum"),
235
            metrics=Accuracy())
236 237 238 239 240 241
        model.fit(self.train_dataset, batch_size=64, shuffle=False)

        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        train_sampler = DistributedBatchSampler(
242 243 244 245 246
            self.train_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
247
        val_sampler = DistributedBatchSampler(
248 249 250 251 252
            self.val_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

        train_loader = fluid.io.DataLoader(
            self.train_dataset,
            batch_sampler=train_sampler,
            places=self.device,
            return_list=True)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=val_sampler,
            places=self.device,
            return_list=True)

        model.fit(train_loader, val_loader)
        fluid.disable_dygraph() if dynamic else None

    def evaluate(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
271 272
        model = Model(LeNet(), self.inputs, self.labels)
        model.prepare(metrics=Accuracy())
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
        model.load(self.weight_path)
        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        sampler = DistributedBatchSampler(
            self.val_dataset, batch_size=64, shuffle=False)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(val_loader)

        fluid.disable_dygraph() if dynamic else None

    def predict(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
292 293
        model = Model(LeNet(), self.inputs)
        model.prepare()
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
        model.load(self.weight_path)
        output = model.predict(
            self.test_dataset, batch_size=64, stack_outputs=True)
        np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))

        acc = compute_acc(output[0], self.val_dataset.labels)
        np.testing.assert_allclose(acc, self.acc1)

        sampler = DistributedBatchSampler(
            self.test_dataset, batch_size=64, shuffle=False)

        test_loader = fluid.io.DataLoader(
            self.test_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(test_loader)

        fluid.disable_dygraph() if dynamic else None


316
class MyModel(fluid.dygraph.Layer):
317
    def __init__(self, classifier_activation='softmax'):
318
        super(MyModel, self).__init__()
319 320
        self._fc = Linear(20, 10)
        self._act = Softmax()  #Todo: accept any activation
321 322 323

    def forward(self, x):
        y = self._fc(x)
324
        y = self._act(y)
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
        return y


class TestModelFunction(unittest.TestCase):
    def set_seed(self, seed=1024):
        fluid.default_startup_program().random_seed = seed
        fluid.default_main_program().random_seed = seed

    def test_train_batch(self, dynamic=True):
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)
        label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
341
            m = MyModel(classifier_activation=None)
342 343 344 345
            optim = fluid.optimizer.SGD(learning_rate=0.001,
                                        parameter_list=m.parameters())
            m.train()
            output = m(to_variable(data))
346
            loss = CrossEntropyLoss(reduction='sum')(output, to_variable(label))
347 348 349 350 351 352 353 354 355
            avg_loss = fluid.layers.reduce_sum(loss)
            avg_loss.backward()
            optim.minimize(avg_loss)
            m.clear_gradients()
            fluid.disable_dygraph()
            return avg_loss.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
356
            device = hapi.set_device('cpu')
357 358 359
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()

360
            net = MyModel(classifier_activation=None)
361
            optim2 = fluid.optimizer.SGD(learning_rate=0.001,
362
                                         parameter_list=net.parameters())
363

364 365
            inputs = [Input([None, dim], 'float32', 'x')]
            labels = [Input([None, 1], 'int64', 'label')]
366
            model = Model(net, inputs, labels)
367
            model.prepare(optim2, loss=CrossEntropyLoss(reduction="sum"))
368 369 370 371
            loss, = model.train_batch([data], [label])
            np.testing.assert_allclose(loss.flatten(), ref.flatten())
            fluid.disable_dygraph() if dynamic else None

372
    def test_test_batch(self):
373 374 375 376 377 378 379 380 381 382 383 384 385 386
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
            m = MyModel()
            m.eval()
            output = m(to_variable(data))
            fluid.disable_dygraph()
            return output.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
387
            device = hapi.set_device('cpu')
388 389
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()
390
            net = MyModel()
391
            inputs = [Input([None, dim], 'float32', 'x')]
392 393
            model = Model(net, inputs)
            model.prepare()
394 395
            out, = model.test_batch([data])

396
            np.testing.assert_allclose(out, ref, rtol=1e-6)
397 398 399 400 401
            fluid.disable_dygraph() if dynamic else None

    def test_save_load(self):
        path = tempfile.mkdtemp()
        for dynamic in [True, False]:
402
            device = hapi.set_device('cpu')
403
            fluid.enable_dygraph(device) if dynamic else None
404
            net = MyModel(classifier_activation=None)
405 406
            inputs = [Input([None, 20], 'float32', 'x')]
            labels = [Input([None, 1], 'int64', 'label')]
407
            optim = fluid.optimizer.SGD(learning_rate=0.001,
408 409
                                        parameter_list=net.parameters())
            model = Model(net, inputs, labels)
410
            model.prepare(
411
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
412 413 414 415 416 417 418
            model.save(path + '/test')
            model.load(path + '/test')
            shutil.rmtree(path)
            fluid.disable_dygraph() if dynamic else None

    def test_dynamic_save_static_load(self):
        path = tempfile.mkdtemp()
419 420 421
        # dynamic saving
        device = hapi.set_device('cpu')
        fluid.enable_dygraph(device)
422
        model = Model(MyModel(classifier_activation=None))
423 424
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
425
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
426 427
        model.save(path + '/test')
        fluid.disable_dygraph()
428

429 430
        inputs = [Input([None, 20], 'float32', 'x')]
        labels = [Input([None, 1], 'int64', 'label')]
431
        model = Model(MyModel(classifier_activation=None), inputs, labels)
432 433
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
434
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
435 436 437 438 439 440
        model.load(path + '/test')
        shutil.rmtree(path)

    def test_static_save_dynamic_load(self):
        path = tempfile.mkdtemp()

441
        net = MyModel(classifier_activation=None)
442 443
        inputs = [Input([None, 20], 'float32', 'x')]
        labels = [Input([None, 1], 'int64', 'label')]
444
        optim = fluid.optimizer.SGD(learning_rate=0.001,
445 446
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
447
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
448 449
        model.save(path + '/test')

450
        device = hapi.set_device('cpu')
451 452
        fluid.enable_dygraph(device)  #if dynamic else None

453
        net = MyModel(classifier_activation=None)
454 455
        inputs = [Input([None, 20], 'float32', 'x')]
        labels = [Input([None, 1], 'int64', 'label')]
456
        optim = fluid.optimizer.SGD(learning_rate=0.001,
457 458
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
459
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
460 461 462 463 464 465
        model.load(path + '/test')
        shutil.rmtree(path)
        fluid.disable_dygraph()

    def test_parameters(self):
        for dynamic in [True, False]:
466
            device = hapi.set_device('cpu')
467
            fluid.enable_dygraph(device) if dynamic else None
468
            net = MyModel()
469
            inputs = [Input([None, 20], 'float32', 'x')]
470 471
            model = Model(net, inputs)
            model.prepare()
472 473 474 475 476 477
            params = model.parameters()
            self.assertTrue(params[0].shape[0] == 20)
            self.assertTrue(params[0].shape[1] == 10)
            fluid.disable_dygraph() if dynamic else None

    def test_export_deploy_model(self):
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
        for dynamic in [True, False]:
            fluid.enable_dygraph() if dynamic else None
            # paddle.disable_static() if dynamic else None
            prog_translator = ProgramTranslator()
            prog_translator.enable(False) if not dynamic else None
            net = LeNetDeclarative()
            inputs = [Input([None, 1, 28, 28], 'float32', 'x')]
            model = Model(net, inputs)
            model.prepare()
            save_dir = tempfile.mkdtemp()
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            tensor_img = np.array(
                np.random.random((1, 1, 28, 28)), dtype=np.float32)
            ori_results = model.test_batch(tensor_img)
            model.save(save_dir, training=False)
            fluid.disable_dygraph() if dynamic else None
495

496 497 498 499 500 501 502 503 504 505 506 507 508 509
            place = fluid.CPUPlace() if not fluid.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                exe = fluid.Executor(place)
                [inference_program, feed_target_names, fetch_targets] = (
                    fluid.io.load_inference_model(
                        dirname=save_dir, executor=exe))
                results = exe.run(inference_program,
                                  feed={feed_target_names[0]: tensor_img},
                                  fetch_list=fetch_targets)
                np.testing.assert_allclose(
                    results, ori_results, rtol=1e-5, atol=1e-7)
                shutil.rmtree(save_dir)
510 511


512 513 514 515 516 517 518 519 520 521
class TestRaiseError(unittest.TestCase):
    def test_input_without_name(self):
        net = MyModel(classifier_activation=None)

        inputs = [Input([None, 10], 'float32')]
        labels = [Input([None, 1], 'int64', 'label')]
        with self.assertRaises(ValueError):
            model = Model(net, inputs, labels)


522 523
if __name__ == '__main__':
    unittest.main()