test_model.py 18.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# copyright (c) 2020 paddlepaddle authors. all rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import unittest

import os
import numpy as np
import shutil
import tempfile

from paddle import fluid
26
from paddle.nn import Conv2d, Pool2D, Linear, ReLU, Sequential
27 28
from paddle.fluid.dygraph.base import to_variable

29 30
import paddle.incubate.hapi as hapi
from paddle.incubate.hapi import Model, Input
31
from paddle.nn.layer.loss import CrossEntropyLoss
32
from paddle.metric import Accuracy
33 34 35
from paddle.incubate.hapi.datasets import MNIST
from paddle.incubate.hapi.vision.models import LeNet
from paddle.incubate.hapi.distributed import DistributedBatchSampler, prepare_distributed_context
36 37
from paddle.fluid.dygraph.jit import declarative
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator
38 39 40


class LeNetDygraph(fluid.dygraph.Layer):
41
    def __init__(self, num_classes=10, classifier_activation=None):
42 43 44
        super(LeNetDygraph, self).__init__()
        self.num_classes = num_classes
        self.features = Sequential(
45
            Conv2d(
46
                1, 6, 3, stride=1, padding=1),
L
LielinJiang 已提交
47
            ReLU(),
48
            Pool2D(2, 'max', 2),
49
            Conv2d(
50
                6, 16, 5, stride=1, padding=0),
L
LielinJiang 已提交
51
            ReLU(),
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
            Pool2D(2, 'max', 2))

        if num_classes > 0:
            self.fc = Sequential(
                Linear(400, 120),
                Linear(120, 84),
                Linear(
                    84, 10, act=classifier_activation))

    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
            x = fluid.layers.flatten(x, 1)
            x = self.fc(x)
        return x


70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
class LeNetDeclarative(fluid.dygraph.Layer):
    def __init__(self, num_classes=10, classifier_activation=None):
        super(LeNetDeclarative, self).__init__()
        self.num_classes = num_classes
        self.features = Sequential(
            Conv2d(
                1, 6, 3, stride=1, padding=1),
            ReLU(),
            Pool2D(2, 'max', 2),
            Conv2d(
                6, 16, 5, stride=1, padding=0),
            ReLU(),
            Pool2D(2, 'max', 2))

        if num_classes > 0:
            self.fc = Sequential(
                Linear(400, 120),
                Linear(120, 84),
                Linear(
                    84, 10, act=classifier_activation))

    @declarative
    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
            x = fluid.layers.flatten(x, 1)
            x = self.fc(x)
        return x


101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
class MnistDataset(MNIST):
    def __init__(self, mode, return_label=True, sample_num=None):
        super(MnistDataset, self).__init__(mode=mode)
        self.return_label = return_label
        if sample_num:
            self.images = self.images[:sample_num]
            self.labels = self.labels[:sample_num]

    def __getitem__(self, idx):
        img, label = self.images[idx], self.labels[idx]
        img = np.reshape(img, [1, 28, 28])
        if self.return_label:
            return img, np.array(self.labels[idx]).astype('int64')
        return img,

    def __len__(self):
        return len(self.images)


def compute_acc(pred, label):
    pred = np.argmax(pred, -1)
    label = np.array(label)
    correct = pred[:, np.newaxis] == label
    return np.sum(correct) / correct.shape[0]


def dynamic_train(model, dataloader):
    optim = fluid.optimizer.Adam(
        learning_rate=0.001, parameter_list=model.parameters())
    model.train()
    for inputs, labels in dataloader:
        outputs = model(inputs)
133
        loss = CrossEntropyLoss(reduction="sum")(outputs, labels)
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
        avg_loss = fluid.layers.reduce_sum(loss)
        avg_loss.backward()
        optim.minimize(avg_loss)
        model.clear_gradients()


def dynamic_evaluate(model, dataloader):
    with fluid.dygraph.no_grad():
        model.eval()
        cnt = 0
        for inputs, labels in dataloader:
            outputs = model(inputs)

            cnt += (np.argmax(outputs.numpy(), -1)[:, np.newaxis] ==
                    labels.numpy()).astype('int').sum()

    return cnt / len(dataloader.dataset)


@unittest.skipIf(not fluid.is_compiled_with_cuda(),
                 'CPU testing is not supported')
class TestModel(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        if not fluid.is_compiled_with_cuda():
            self.skipTest('module not tested when ONLY_CPU compling')
160
        cls.device = hapi.set_device('gpu')
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
        fluid.enable_dygraph(cls.device)

        sp_num = 1280
        cls.train_dataset = MnistDataset(mode='train', sample_num=sp_num)
        cls.val_dataset = MnistDataset(mode='test', sample_num=sp_num)
        cls.test_dataset = MnistDataset(
            mode='test', return_label=False, sample_num=sp_num)

        cls.train_loader = fluid.io.DataLoader(
            cls.train_dataset, places=cls.device, batch_size=64)
        cls.val_loader = fluid.io.DataLoader(
            cls.val_dataset, places=cls.device, batch_size=64)
        cls.test_loader = fluid.io.DataLoader(
            cls.test_dataset, places=cls.device, batch_size=64)

        seed = 333
        fluid.default_startup_program().random_seed = seed
        fluid.default_main_program().random_seed = seed

        dy_lenet = LeNetDygraph()
        cls.init_param = dy_lenet.state_dict()
        dynamic_train(dy_lenet, cls.train_loader)

        cls.acc1 = dynamic_evaluate(dy_lenet, cls.val_loader)

186 187
        cls.inputs = [Input([-1, 1, 28, 28], 'float32', 'image')]
        cls.labels = [Input([None, 1], 'int64', 'label')]
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

        cls.save_dir = tempfile.mkdtemp()
        cls.weight_path = os.path.join(cls.save_dir, 'lenet')
        fluid.dygraph.save_dygraph(dy_lenet.state_dict(), cls.weight_path)

        fluid.disable_dygraph()

    @classmethod
    def tearDownClass(cls):
        shutil.rmtree(cls.save_dir)

    def test_fit_dygraph(self):
        self.fit(True)

    def test_fit_static(self):
        self.fit(False)

205 206 207 208 209 210
    def test_fit_dynamic_with_rank(self):
        self.fit(True, 2, 0)

    def test_fit_static_with_rank(self):
        self.fit(False, 2, 0)

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    def test_evaluate_dygraph(self):
        self.evaluate(True)

    def test_evaluate_static(self):
        self.evaluate(False)

    def test_predict_dygraph(self):
        self.predict(True)

    def test_predict_static(self):
        self.predict(False)

    def test_prepare_context(self):
        prepare_distributed_context()

226
    def fit(self, dynamic, num_replicas=None, rank=None):
227 228 229 230 231
        fluid.enable_dygraph(self.device) if dynamic else None
        seed = 333
        fluid.default_startup_program().random_seed = seed
        fluid.default_main_program().random_seed = seed

232
        net = LeNet(classifier_activation=None)
233
        optim_new = fluid.optimizer.Adam(
234 235
            learning_rate=0.001, parameter_list=net.parameters())
        model = Model(net, inputs=self.inputs, labels=self.labels)
236 237
        model.prepare(
            optim_new,
238
            loss=CrossEntropyLoss(reduction="sum"),
239
            metrics=Accuracy())
240 241 242 243 244 245
        model.fit(self.train_dataset, batch_size=64, shuffle=False)

        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        train_sampler = DistributedBatchSampler(
246 247 248 249 250
            self.train_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
251
        val_sampler = DistributedBatchSampler(
252 253 254 255 256
            self.val_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274

        train_loader = fluid.io.DataLoader(
            self.train_dataset,
            batch_sampler=train_sampler,
            places=self.device,
            return_list=True)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=val_sampler,
            places=self.device,
            return_list=True)

        model.fit(train_loader, val_loader)
        fluid.disable_dygraph() if dynamic else None

    def evaluate(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
275 276
        model = Model(LeNet(), self.inputs, self.labels)
        model.prepare(metrics=Accuracy())
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
        model.load(self.weight_path)
        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        sampler = DistributedBatchSampler(
            self.val_dataset, batch_size=64, shuffle=False)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(val_loader)

        fluid.disable_dygraph() if dynamic else None

    def predict(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
296 297
        model = Model(LeNet(), self.inputs)
        model.prepare()
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
        model.load(self.weight_path)
        output = model.predict(
            self.test_dataset, batch_size=64, stack_outputs=True)
        np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))

        acc = compute_acc(output[0], self.val_dataset.labels)
        np.testing.assert_allclose(acc, self.acc1)

        sampler = DistributedBatchSampler(
            self.test_dataset, batch_size=64, shuffle=False)

        test_loader = fluid.io.DataLoader(
            self.test_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(test_loader)

        fluid.disable_dygraph() if dynamic else None


320
class MyModel(fluid.dygraph.Layer):
321
    def __init__(self, classifier_activation='softmax'):
322
        super(MyModel, self).__init__()
323
        self._fc = Linear(20, 10, act=classifier_activation)
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

    def forward(self, x):
        y = self._fc(x)
        return y


class TestModelFunction(unittest.TestCase):
    def set_seed(self, seed=1024):
        fluid.default_startup_program().random_seed = seed
        fluid.default_main_program().random_seed = seed

    def test_train_batch(self, dynamic=True):
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)
        label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
343
            m = MyModel(classifier_activation=None)
344 345 346 347
            optim = fluid.optimizer.SGD(learning_rate=0.001,
                                        parameter_list=m.parameters())
            m.train()
            output = m(to_variable(data))
348
            loss = CrossEntropyLoss(reduction='sum')(output, to_variable(label))
349 350 351 352 353 354 355 356 357
            avg_loss = fluid.layers.reduce_sum(loss)
            avg_loss.backward()
            optim.minimize(avg_loss)
            m.clear_gradients()
            fluid.disable_dygraph()
            return avg_loss.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
358
            device = hapi.set_device('cpu')
359 360 361
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()

362
            net = MyModel(classifier_activation=None)
363
            optim2 = fluid.optimizer.SGD(learning_rate=0.001,
364
                                         parameter_list=net.parameters())
365

366 367
            inputs = [Input([None, dim], 'float32', 'x')]
            labels = [Input([None, 1], 'int64', 'label')]
368
            model = Model(net, inputs, labels)
369
            model.prepare(optim2, loss=CrossEntropyLoss(reduction="sum"))
370 371 372 373
            loss, = model.train_batch([data], [label])
            np.testing.assert_allclose(loss.flatten(), ref.flatten())
            fluid.disable_dygraph() if dynamic else None

374
    def test_test_batch(self):
375 376 377 378 379 380 381 382 383 384 385 386 387 388
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
            m = MyModel()
            m.eval()
            output = m(to_variable(data))
            fluid.disable_dygraph()
            return output.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
389
            device = hapi.set_device('cpu')
390 391
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()
392
            net = MyModel()
393
            inputs = [Input([None, dim], 'float32', 'x')]
394 395
            model = Model(net, inputs)
            model.prepare()
396 397
            out, = model.test_batch([data])

398
            np.testing.assert_allclose(out, ref, rtol=1e-6)
399 400 401 402 403
            fluid.disable_dygraph() if dynamic else None

    def test_save_load(self):
        path = tempfile.mkdtemp()
        for dynamic in [True, False]:
404
            device = hapi.set_device('cpu')
405
            fluid.enable_dygraph(device) if dynamic else None
406
            net = MyModel(classifier_activation=None)
407 408
            inputs = [Input([None, 20], 'float32', 'x')]
            labels = [Input([None, 1], 'int64', 'label')]
409
            optim = fluid.optimizer.SGD(learning_rate=0.001,
410 411
                                        parameter_list=net.parameters())
            model = Model(net, inputs, labels)
412
            model.prepare(
413
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
414 415 416 417 418 419 420
            model.save(path + '/test')
            model.load(path + '/test')
            shutil.rmtree(path)
            fluid.disable_dygraph() if dynamic else None

    def test_dynamic_save_static_load(self):
        path = tempfile.mkdtemp()
421 422 423
        # dynamic saving
        device = hapi.set_device('cpu')
        fluid.enable_dygraph(device)
424
        model = Model(MyModel(classifier_activation=None))
425 426
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
427
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
428 429
        model.save(path + '/test')
        fluid.disable_dygraph()
430

431 432
        inputs = [Input([None, 20], 'float32', 'x')]
        labels = [Input([None, 1], 'int64', 'label')]
433
        model = Model(MyModel(classifier_activation=None), inputs, labels)
434 435
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
436
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
437 438 439 440 441 442
        model.load(path + '/test')
        shutil.rmtree(path)

    def test_static_save_dynamic_load(self):
        path = tempfile.mkdtemp()

443
        net = MyModel(classifier_activation=None)
444 445
        inputs = [Input([None, 20], 'float32', 'x')]
        labels = [Input([None, 1], 'int64', 'label')]
446
        optim = fluid.optimizer.SGD(learning_rate=0.001,
447 448
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
449
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
450 451
        model.save(path + '/test')

452
        device = hapi.set_device('cpu')
453 454
        fluid.enable_dygraph(device)  #if dynamic else None

455
        net = MyModel(classifier_activation=None)
456 457
        inputs = [Input([None, 20], 'float32', 'x')]
        labels = [Input([None, 1], 'int64', 'label')]
458
        optim = fluid.optimizer.SGD(learning_rate=0.001,
459 460
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
461
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
462 463 464 465 466 467
        model.load(path + '/test')
        shutil.rmtree(path)
        fluid.disable_dygraph()

    def test_parameters(self):
        for dynamic in [True, False]:
468
            device = hapi.set_device('cpu')
469
            fluid.enable_dygraph(device) if dynamic else None
470
            net = MyModel()
471
            inputs = [Input([None, 20], 'float32', 'x')]
472 473
            model = Model(net, inputs)
            model.prepare()
474 475 476 477 478 479
            params = model.parameters()
            self.assertTrue(params[0].shape[0] == 20)
            self.assertTrue(params[0].shape[1] == 10)
            fluid.disable_dygraph() if dynamic else None

    def test_export_deploy_model(self):
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
        for dynamic in [True, False]:
            fluid.enable_dygraph() if dynamic else None
            # paddle.disable_static() if dynamic else None
            prog_translator = ProgramTranslator()
            prog_translator.enable(False) if not dynamic else None
            net = LeNetDeclarative()
            inputs = [Input([None, 1, 28, 28], 'float32', 'x')]
            model = Model(net, inputs)
            model.prepare()
            save_dir = tempfile.mkdtemp()
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            tensor_img = np.array(
                np.random.random((1, 1, 28, 28)), dtype=np.float32)
            ori_results = model.test_batch(tensor_img)
            model.save(save_dir, training=False)
            fluid.disable_dygraph() if dynamic else None
497

498 499 500 501 502 503 504 505 506 507 508 509 510 511
            place = fluid.CPUPlace() if not fluid.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                exe = fluid.Executor(place)
                [inference_program, feed_target_names, fetch_targets] = (
                    fluid.io.load_inference_model(
                        dirname=save_dir, executor=exe))
                results = exe.run(inference_program,
                                  feed={feed_target_names[0]: tensor_img},
                                  fetch_list=fetch_targets)
                np.testing.assert_allclose(
                    results, ori_results, rtol=1e-5, atol=1e-7)
                shutil.rmtree(save_dir)
512 513


514 515 516 517 518 519 520 521 522 523
class TestRaiseError(unittest.TestCase):
    def test_input_without_name(self):
        net = MyModel(classifier_activation=None)

        inputs = [Input([None, 10], 'float32')]
        labels = [Input([None, 1], 'int64', 'label')]
        with self.assertRaises(ValueError):
            model = Model(net, inputs, labels)


524 525
if __name__ == '__main__':
    unittest.main()