optimizer.py 21.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from collections import defaultdict
Q
Qiao Longfei 已提交
16

17
import framework
Q
Qiao Longfei 已提交
18
import layers
F
fengjiayi 已提交
19
from backward import append_backward
Y
Yu Yang 已提交
20 21
from framework import program_guard
import unique_name
22 23 24
from initializer import Constant
from layer_helper import LayerHelper
from regularizer import append_regularization_ops
F
fengjiayi 已提交
25
from clip import append_gradient_clip_ops, error_clip_callback
26

27
__all__ = ['SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad']
Q
Qiao Longfei 已提交
28 29 30 31 32 33


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
34 35
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
36 37
    """

Q
Qiao Longfei 已提交
38
    def __init__(self, learning_rate, global_step=None, regularization=None):
39 40
        if not isinstance(learning_rate, float) and \
                not isinstance(learning_rate, framework.Variable):
Q
qiaolongfei 已提交
41
            raise TypeError("learning rate should be float or Variable")
42
        self._global_step = global_step
D
dzhwinter 已提交
43
        self.regularization = regularization
44 45 46
        self._learning_rate = learning_rate
        # each program should have a independent learning rate
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
47
        self._learning_rate_map = dict()
48 49 50
        if isinstance(self._learning_rate, framework.Variable):
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
51 52 53 54 55
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
56
        self.helper = None
Q
Qiao Longfei 已提交
57

Q
Qiao Longfei 已提交
58
    def _create_global_learning_rate(self):
59
        lr = self.global_learning_rate()
Q
Qiao Longfei 已提交
60

61 62 63 64
        if isinstance(lr, framework.Variable):
            return
        else:
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
65
                raise TypeError(
66 67
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
68

69 70 71 72 73 74 75 76 77 78
        # create learning rate in the current main program
        self._learning_rate_map[framework.default_main_program(
        )] = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(self._learning_rate),
            dtype='float32',
            persistable=True)

    def global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
79 80 81 82
        """
        get global decayed learning rate
        :return:
        """
83 84
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
85
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
86

Q
Qiao Longfei 已提交
87 88 89 90 91
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

92 93 94 95
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
96
        return self.global_learning_rate() * param_lr
97 98 99 100 101 102 103

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
104
        """
105 106
        pass

107 108 109 110 111 112 113 114 115 116 117 118 119
    def _finish_update(self, block):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
            list of finish ops or None
        """
        pass

Q
Qiao Longfei 已提交
120
    def _add_accumulator(self, name, param, dtype=None, fill_value=0.0):
121 122 123 124 125 126 127 128 129 130 131
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
132
            raise Exception("Accumulator {} already exists for parameter {}".
133
                            format(name, param.name))
Q
Qiao Longfei 已提交
134 135 136

        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
Y
Yu Yang 已提交
137
            name=unique_name.generate(name),
Q
Qiao Longfei 已提交
138
            persistable=True,
F
fengjiayi 已提交
139
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
140 141 142
            type=param.type,
            shape=param.shape)
        self.helper.set_variable_initializer(
143
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
144
        self._accumulators[name][param.name] = var
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    def _increment_global_step(self, block):
        """Increment the global step by 1 after every iteration

        Args:
            block: the block in which the loss variable is present

        Returns:
            list with global_step increment op as its only element
        """
        assert isinstance(block, framework.Block)
        assert self._global_step is not None
        # create the increment op
        increment_op = block.append_op(
            type="increment",
            inputs={"X": self._global_step},
            outputs={"Out": self._global_step},
            attrs={"step": 1.0})

        return increment_op

Q
Qiao Longfei 已提交
182 183 184
    def create_optimization_pass(self,
                                 parameters_and_grads,
                                 loss,
185
                                 startup_program=None):
Q
Qiao Longfei 已提交
186 187 188 189 190 191 192
        """Add optimization operators to update gradients to variables.

        Args:
          loss: the target that this optimization is for.
          parameters_and_grads: a list of (variable, gradient) pair to update.

        Returns:
193 194 195 196
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
197
          :param startup_program:
Q
Qiao Longfei 已提交
198
        """
199 200 201 202 203
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
204
        # for parameters and extend _finish_update method to add custom ops.
205 206

        # Create any accumulators
Q
Qiao Longfei 已提交
207
        program = loss.block.program
208
        with program_guard(program, startup_program):
Y
Yancey1989 已提交
209 210
            global_block = framework.default_main_program().global_block()
            start = len(global_block.ops)
211 212 213
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])
Q
Qiao Longfei 已提交
214
            self._create_global_learning_rate()
215 216 217 218 219 220 221 222 223 224 225

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
                if param_and_grad[0].trainable is True and param_and_grad[
                        1] is not None:
                    optimize_op = self._append_optimize_op(loss.block,
                                                           param_and_grad)
                    optimize_ops.append(optimize_op)

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
Y
Yancey1989 已提交
226
            self._finish_update(loss.block)
227 228

            if self._global_step is not None:
Y
Yancey1989 已提交
229 230 231
                self._increment_global_step(loss.block)
            end = len(global_block.ops)
            return global_block.slice_ops(start, end)
Q
Qiao Longfei 已提交
232

Q
Qiao Longfei 已提交
233 234
    def minimize(self,
                 loss,
235
                 startup_program=None,
Q
Qiao Longfei 已提交
236 237
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
238 239
        """Add operations to minimize `loss` by updating `parameter_list`.

F
fengjiayi 已提交
240
        This method combines interface `append_backward()` and
Q
Qiao Longfei 已提交
241 242
        `create_optimization_pass()` into one.
        """
F
fengjiayi 已提交
243
        params_grads = append_backward(loss, parameter_list, no_grad_set,
Y
Yang Yang 已提交
244
                                       [error_clip_callback])
Y
Yu Yang 已提交
245 246 247

        params_grads = append_gradient_clip_ops(params_grads)

F
fengjiayi 已提交
248
        # Add regularization if any
D
dzhwinter 已提交
249 250
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
Y
Yu Yang 已提交
251

Q
Qiao Longfei 已提交
252
        optimize_ops = self.create_optimization_pass(params_grads, loss,
253
                                                     startup_program)
T
typhoonzero 已提交
254
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
255 256 257 258 259 260


class SGDOptimizer(Optimizer):
    """ Simple SGD optimizer without any state.
    """

D
dzhwinter 已提交
261
    def __init__(self, learning_rate, **kwargs):
Q
Qiao Longfei 已提交
262
        assert learning_rate is not None
Q
Qiao Longfei 已提交
263 264
        super(SGDOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
Q
Qiao Longfei 已提交
265 266
        self.type = "sgd"

267 268
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
269

Q
Qiao Longfei 已提交
270 271 272 273 274 275
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
276
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
277
            },
278
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
279 280

        return sgd_op
281 282 283 284 285 286 287


class MomentumOptimizer(Optimizer):
    """Simple Momentum optimizer with velocity state
    """
    _velocity_acc_str = "velocity"

D
dzhwinter 已提交
288
    def __init__(self, learning_rate, momentum, use_nesterov=False, **kwargs):
289 290
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
291 292
        super(MomentumOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
293 294
        self.type = "momentum"
        self._momentum = momentum
295
        self._use_nesterov = bool(use_nesterov)
296 297 298 299 300

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
301
            self._add_accumulator(self._velocity_acc_str, p)
302 303 304 305 306 307 308 309 310 311 312 313 314

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
315
                "LearningRate": self._create_param_lr(param_and_grad)
316 317 318 319 320
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
321
            attrs={"mu": self._momentum,
322
                   "use_nesterov": self._use_nesterov})
323 324

        return momentum_op
325 326 327 328 329 330 331


class AdagradOptimizer(Optimizer):
    """Simple Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
332
    def __init__(self, learning_rate, epsilon=1.0e-6, **kwargs):
333 334
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
335 336
        super(AdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
337 338 339 340 341 342 343
        self.type = "adagrad"
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
344
            self._add_accumulator(self._moment_acc_str, p)
345 346 347 348 349 350 351

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

352
        # Create the adagrad optimizer op
353 354 355 356 357 358
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
359
                "LearningRate": self._create_param_lr(param_and_grad)
360 361 362 363 364 365
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
366 367 368 369 370 371 372 373 374 375 376 377


class AdamOptimizer(Optimizer):
    """Implements the Adam Optimizer
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
378
                 epsilon=1e-8,
D
dzhwinter 已提交
379
                 **kwargs):
380 381 382 383
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
384 385
        super(AdamOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
386 387 388 389 390 391 392 393
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

Q
Qiao Longfei 已提交
394
        main_block = block.program.global_block()
395 396
        # Create beta1 and beta2 power tensors
        beta_shape = [1]
Q
Qiao Longfei 已提交
397
        self._beta1_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
398
            name=unique_name.generate('beta1_pow_acc'),
Q
Qiao Longfei 已提交
399 400 401 402 403
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
404
            self._beta1_pow_acc, initializer=Constant(self._beta1))
Q
Qiao Longfei 已提交
405 406

        self._beta2_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
407
            name=unique_name.generate('beta2_pow_acc'),
Q
Qiao Longfei 已提交
408 409 410 411 412 413
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)

        self.helper.set_variable_initializer(
414
            self._beta2_pow_acc, initializer=Constant(self._beta2))
415 416 417

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
418 419
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
420 421 422 423 424 425 426 427

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
428
        # create the adam optimize op
429 430 431 432 433
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
434
                "LearningRate": self._create_param_lr(param_and_grad),
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": self._beta1_pow_acc,
                "Beta2Pow": self._beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

    def _finish_update(self, block):
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
457 458
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
459 460 461 462 463
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

Q
Qiao Longfei 已提交
464
        scale_beta2 = main_block.append_op(
465 466 467 468 469 470
            type="scale",
            inputs={"X": self._beta2_pow_acc},
            outputs={"Out": self._beta2_pow_acc},
            attrs={"scale": self._beta2})

        return [scale_beta1, scale_beta2]
471 472 473 474 475 476 477 478 479 480 481 482


class AdamaxOptimizer(Optimizer):
    """Implements the Adamax Optimizer
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
483
                 epsilon=1e-8,
D
dzhwinter 已提交
484
                 **kwargs):
485 486 487 488
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
489 490
        super(AdamaxOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
491 492 493 494 495 496 497 498
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create beta1 power accumulator tensor
        beta_shape = [1]
Q
Qiao Longfei 已提交
499
        self._beta1_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
500
            name=unique_name.generate('beta1_pow_acc'),
Q
Qiao Longfei 已提交
501 502 503 504 505
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
506
            self._beta1_pow_acc, initializer=Constant(self._beta1))
507 508 509

        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
510 511
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
512 513 514 515 516 517 518 519 520 521 522 523 524

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
525
                "LearningRate": self._create_param_lr(param_and_grad),
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": self._beta1_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

    def _finish_update(self, block):
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
547 548
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
549 550 551 552 553 554
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

        return [scale_beta1]
555 556 557 558 559 560 561


class DecayedAdagradOptimizer(Optimizer):
    """Simple Decayed Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
562
    def __init__(self, learning_rate, decay=0.95, epsilon=1.0e-6, **kwargs):
563 564 565 566
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
567 568
        super(DecayedAdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614


# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer