inference_api.cc 48.0 KB
Newer Older
F
flame 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/pybind/inference_api.h"
16

17
#include <pybind11/functional.h>
18
#include <pybind11/numpy.h>
F
flame 已提交
19
#include <pybind11/stl.h>
20

F
flame 已提交
21
#include <cstring>
22
#include <functional>
F
flame 已提交
23
#include <iostream>
24
#include <iterator>
25
#include <map>
26
#include <memory>
F
flame 已提交
27
#include <string>
28
#include <type_traits>
29
#include <unordered_set>
30
#include <utility>
F
flame 已提交
31
#include <vector>
32

F
flame 已提交
33
#include "paddle/fluid/inference/api/analysis_predictor.h"
34
#include "paddle/fluid/inference/api/helper.h"
35
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
36
#include "paddle/fluid/inference/api/paddle_infer_contrib.h"
F
flame 已提交
37
#include "paddle/fluid/inference/api/paddle_inference_api.h"
38
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
39
#include "paddle/fluid/inference/utils/io_utils.h"
40 41 42
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/include/tensor.h"
43
#include "paddle/phi/core/compat/convert_utils.h"
F
flame 已提交
44

45 46 47 48
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/phi/core/cuda_stream.h"
#endif

49 50 51 52
#ifdef PADDLE_WITH_ONNXRUNTIME
#include "paddle/fluid/inference/api/onnxruntime_predictor.h"
#endif

F
flame 已提交
53 54
namespace py = pybind11;

55 56 57 58 59 60 61 62 63 64 65 66 67
namespace pybind11 {
namespace detail {

// Note: use same enum number of float16 in numpy.
// import numpy as np
// print np.dtype(np.float16).num  # 23
constexpr int NPY_FLOAT16_ = 23;
constexpr int NPY_UINT16_ = 4;

// Note: Since float16 is not a builtin type in C++, we register
// paddle::platform::float16 as numpy.float16.
// Ref: https://github.com/pybind/pybind11/issues/1776
template <>
68
struct npy_format_descriptor<phi::dtype::float16> {
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_FLOAT16_);
    return reinterpret_borrow<py::dtype>(ptr);
  }
  static std::string format() {
    // Note: "e" represents float16.
    // Details at:
    // https://docs.python.org/3/library/struct.html#format-characters.
    return "e";
  }
  static constexpr auto name = _("float16");
};

}  // namespace detail
}  // namespace pybind11

F
flame 已提交
85 86
namespace paddle {
namespace pybind {
87 88 89
using paddle::AnalysisPredictor;
using paddle::NativeConfig;
using paddle::NativePaddlePredictor;
F
flame 已提交
90
using paddle::PaddleBuf;
91
using paddle::PaddleDataLayout;
92
using paddle::PaddleDType;
93
using paddle::PaddlePassBuilder;
F
flame 已提交
94 95
using paddle::PaddlePlace;
using paddle::PaddlePredictor;
96 97 98
using paddle::PaddleTensor;
using paddle::PassStrategy;
using paddle::ZeroCopyTensor;
F
flame 已提交
99

100 101
namespace {
void BindPaddleDType(py::module *m);
102
void BindPaddleDataLayout(py::module *m);
103 104 105 106 107 108
void BindPaddleBuf(py::module *m);
void BindPaddleTensor(py::module *m);
void BindPaddlePlace(py::module *m);
void BindPaddlePredictor(py::module *m);
void BindNativeConfig(py::module *m);
void BindNativePredictor(py::module *m);
109
void BindLiteNNAdapterConfig(py::module *m);
110 111
void BindAnalysisConfig(py::module *m);
void BindAnalysisPredictor(py::module *m);
112 113
void BindZeroCopyTensor(py::module *m);
void BindPaddlePassBuilder(py::module *m);
W
Wilber 已提交
114 115 116
void BindPaddleInferPredictor(py::module *m);
void BindPaddleInferTensor(py::module *m);
void BindPredictorPool(py::module *m);
F
flame 已提交
117

118
#ifdef PADDLE_WITH_MKLDNN
119
void BindMkldnnQuantizerConfig(py::module *m);
120
#endif
121 122

template <typename T>
123
PaddleBuf PaddleBufCreate(py::array_t<T, py::array::c_style> data) {
124
  PaddleBuf buf(data.size() * sizeof(T));
W
Wilber 已提交
125 126
  std::copy_n(static_cast<const T *>(data.data()),
              data.size(),
127 128 129 130 131
              static_cast<T *>(buf.data()));
  return buf;
}

template <typename T>
132 133
void PaddleBufReset(PaddleBuf &buf,                             // NOLINT
                    py::array_t<T, py::array::c_style> data) {  // NOLINT
134
  buf.Resize(data.size() * sizeof(T));
W
Wilber 已提交
135 136
  std::copy_n(static_cast<const T *>(data.data()),
              data.size(),
137 138 139 140 141
              static_cast<T *>(buf.data()));
}

template <typename T>
PaddleTensor PaddleTensorCreate(
142
    py::array_t<T, py::array::c_style> data,
143
    const std::string name = "",
W
Wilber 已提交
144 145
    const std::vector<std::vector<size_t>> &lod = {},
    bool copy = true) {
146 147 148 149
  PaddleTensor tensor;

  if (copy) {
    PaddleBuf buf(data.size() * sizeof(T));
W
Wilber 已提交
150 151
    std::copy_n(static_cast<const T *>(data.data()),
                data.size(),
152 153 154 155 156 157
                static_cast<T *>(buf.data()));
    tensor.data = std::move(buf);
  } else {
    tensor.data = PaddleBuf(data.mutable_data(), data.size() * sizeof(T));
  }

158
  tensor.dtype = inference::PaddleTensorGetDType<T>();
159 160 161 162 163 164 165 166
  tensor.name = name;
  tensor.lod = lod;
  tensor.shape.resize(data.ndim());
  std::copy_n(data.shape(), data.ndim(), tensor.shape.begin());

  return tensor;
}

167
py::dtype PaddleDTypeToNumpyDType(PaddleDType dtype) {
168
  py::dtype dt;
169
  switch (dtype) {
170 171 172 173 174 175
    case PaddleDType::INT32:
      dt = py::dtype::of<int32_t>();
      break;
    case PaddleDType::INT64:
      dt = py::dtype::of<int64_t>();
      break;
176 177 178
    case PaddleDType::FLOAT64:
      dt = py::dtype::of<double>();
      break;
179 180 181
    case PaddleDType::FLOAT32:
      dt = py::dtype::of<float>();
      break;
182
    case PaddleDType::FLOAT16:
183
      dt = py::dtype::of<phi::dtype::float16>();
184
      break;
W
Wilber 已提交
185 186 187
    case PaddleDType::UINT8:
      dt = py::dtype::of<uint8_t>();
      break;
188 189 190 191 192
    case PaddleDType::INT8:
      dt = py::dtype::of<int8_t>();
      break;
    case PaddleDType::BOOL:
      dt = py::dtype::of<bool>();
193
      break;
194
    default:
195
      PADDLE_THROW(platform::errors::Unimplemented(
196 197
          "Unsupported data type. Now only supports INT32, INT64, FLOAT64, "
          "FLOAT32, FLOAT16, INT8, UINT8 and BOOL."));
198
  }
199 200 201 202 203 204 205 206 207 208

  return dt;
}

py::array PaddleTensorGetData(PaddleTensor &tensor) {  // NOLINT
  py::dtype dt = PaddleDTypeToNumpyDType(tensor.dtype);
  return py::array(std::move(dt), {tensor.shape}, tensor.data.data());
}

template <typename T>
209 210
void ZeroCopyTensorCreate(ZeroCopyTensor &tensor,  // NOLINT
                          py::array_t<T, py::array::c_style> data) {
211 212 213 214 215 216
  std::vector<int> shape;
  std::copy_n(data.shape(), data.ndim(), std::back_inserter(shape));
  tensor.Reshape(std::move(shape));
  tensor.copy_from_cpu(static_cast<const T *>(data.data()));
}

S
Steffy-zxf 已提交
217 218 219 220 221 222 223 224 225 226 227 228
/// \brief Experimental interface.
/// Create the Strings tensor from data.
/// \param tensor The tensor will be created and
/// the tensor value is same as data.
/// \param data The input text.
void ZeroCopyStringTensorCreate(ZeroCopyTensor &tensor,  // NOLINT
                                const paddle_infer::Strings *data) {
  size_t shape = data->size();
  tensor.ReshapeStrings(shape);
  tensor.copy_strings_from_cpu(data);
}

W
Wilber 已提交
229
template <typename T>
230 231
void PaddleInferTensorCreate(paddle_infer::Tensor &tensor,  // NOLINT
                             py::array_t<T, py::array::c_style> data) {
W
Wilber 已提交
232 233 234 235 236 237
  std::vector<int> shape;
  std::copy_n(data.shape(), data.ndim(), std::back_inserter(shape));
  tensor.Reshape(std::move(shape));
  tensor.CopyFromCpu(static_cast<const T *>(data.data()));
}

238 239 240 241 242 243 244 245 246 247 248 249
paddle_infer::PlaceType ToPaddleInferPlace(
    phi::AllocationType allocation_type) {
  if (allocation_type == phi::AllocationType::CPU) {
    return paddle_infer::PlaceType::kCPU;
  } else if (allocation_type == phi::AllocationType::GPU) {
    return paddle_infer::PlaceType::kGPU;
  } else {
    return paddle_infer::PlaceType::kCPU;
  }
}

void PaddleInferShareExternalData(paddle_infer::Tensor &tensor,  // NOLINT
250
                                  phi::DenseTensor input_tensor) {
251 252 253 254
  std::vector<int> shape;
  for (int i = 0; i < input_tensor.dims().size(); ++i) {
    shape.push_back(input_tensor.dims()[i]);
  }
255 256 257 258 259 260
  if (input_tensor.dtype() == phi::DataType::FLOAT64) {
    tensor.ShareExternalData(
        static_cast<double *>(input_tensor.data()),
        shape,
        ToPaddleInferPlace(input_tensor.place().GetType()));
  } else if (input_tensor.dtype() == phi::DataType::FLOAT32) {
261
    tensor.ShareExternalData(
W
Wilber 已提交
262 263
        static_cast<float *>(input_tensor.data()),
        shape,
264 265 266
        ToPaddleInferPlace(input_tensor.place().GetType()));
  } else if (input_tensor.dtype() == phi::DataType::FLOAT16) {
    tensor.ShareExternalData(
267
        static_cast<phi::dtype::float16 *>(input_tensor.data()),
W
Wilber 已提交
268
        shape,
269
        ToPaddleInferPlace(input_tensor.place().GetType()));
270 271 272 273 274 275 276 277 278 279 280 281 282
  } else if (input_tensor.dtype() == phi::DataType::INT32) {
    tensor.ShareExternalData(
        static_cast<int32_t *>(input_tensor.data()),
        shape,
        ToPaddleInferPlace(input_tensor.place().GetType()));
  } else if (input_tensor.dtype() == phi::DataType::INT64) {
    tensor.ShareExternalData(
        static_cast<int64_t *>(input_tensor.data()),
        shape,
        ToPaddleInferPlace(input_tensor.place().GetType()));
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported data type. Now share_external_data only supports INT32, "
283
        "INT64, FLOAT64, FLOAT32 and FLOAT16."));
284 285 286
  }
}

287 288
void PaddleTensorShareExternalData(paddle_infer::Tensor &tensor,  // NOLINT
                                   paddle::Tensor &&paddle_tensor) {
289 290 291 292
  std::vector<int> shape;
  for (int i = 0; i < paddle_tensor.dims().size(); ++i) {
    shape.push_back(paddle_tensor.dims()[i]);
  }
293 294 295 296 297 298 299

  if (paddle_tensor.dtype() == phi::DataType::FLOAT64) {
    tensor.ShareExternalData(
        static_cast<double *>(paddle_tensor.data<double>()),
        shape,
        ToPaddleInferPlace(paddle_tensor.place().GetType()));
  } else if (paddle_tensor.dtype() == phi::DataType::FLOAT32) {
300 301 302 303
    tensor.ShareExternalData(
        static_cast<float *>(paddle_tensor.data<float>()),
        shape,
        ToPaddleInferPlace(paddle_tensor.place().GetType()));
304
  } else if (paddle_tensor.dtype() == phi::DataType::FLOAT16) {
305 306 307 308 309
    tensor.ShareExternalData(
        static_cast<paddle::platform::float16 *>(
            paddle_tensor.data<paddle::platform::float16>()),
        shape,
        ToPaddleInferPlace(paddle_tensor.place().GetType()));
310
  } else if (paddle_tensor.dtype() == phi::DataType::INT32) {
311 312 313 314
    tensor.ShareExternalData(
        static_cast<int32_t *>(paddle_tensor.data<int32_t>()),
        shape,
        ToPaddleInferPlace(paddle_tensor.place().GetType()));
315
  } else if (paddle_tensor.dtype() == phi::DataType::INT64) {
316 317 318 319 320 321 322 323
    tensor.ShareExternalData(
        static_cast<int64_t *>(paddle_tensor.data<int64_t>()),
        shape,
        ToPaddleInferPlace(paddle_tensor.place().GetType()));
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported data type. Now share_external_data only supports INT32, "
        "INT64, FLOAT32 and FLOAT16."));
324 325 326
  }
}

S
Steffy-zxf 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339
/// \brief Experimental interface.
/// Create the Strings tensor from data.
/// \param tensor The tensor will be created and
/// the tensor value is same as data.
/// \param data The input text.
void PaddleInferStringTensorCreate(paddle_infer::Tensor &tensor,  // NOLINT
                                   const paddle_infer::Strings *data) {
  VLOG(3) << "Create PaddleInferTensor, dtype = Strings ";
  size_t shape = data->size();
  tensor.ReshapeStrings(shape);
  tensor.CopyStringsFromCpu(data);
}

340 341 342 343 344 345 346 347 348
size_t PaddleGetDTypeSize(PaddleDType dt) {
  size_t size{0};
  switch (dt) {
    case PaddleDType::INT32:
      size = sizeof(int32_t);
      break;
    case PaddleDType::INT64:
      size = sizeof(int64_t);
      break;
349 350 351
    case PaddleDType::FLOAT64:
      size = sizeof(double);
      break;
352 353 354
    case PaddleDType::FLOAT32:
      size = sizeof(float);
      break;
355
    case PaddleDType::FLOAT16:
356
      size = sizeof(phi::dtype::float16);
357 358 359 360 361 362 363 364 365 366
      break;
    case PaddleDType::INT8:
      size = sizeof(int8_t);
      break;
    case PaddleDType::UINT8:
      size = sizeof(uint8_t);
      break;
    case PaddleDType::BOOL:
      size = sizeof(bool);
      break;
367
    default:
368
      PADDLE_THROW(platform::errors::Unimplemented(
369 370
          "Unsupported data t ype. Now only supports INT32, INT64, FLOAT64, "
          "FLOAT32, FLOAT16, INT8, UINT8 and BOOL."));
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
  }
  return size;
}

py::array ZeroCopyTensorToNumpy(ZeroCopyTensor &tensor) {  // NOLINT
  py::dtype dt = PaddleDTypeToNumpyDType(tensor.type());
  auto tensor_shape = tensor.shape();
  py::array::ShapeContainer shape(tensor_shape.begin(), tensor_shape.end());
  py::array array(dt, std::move(shape));

  switch (tensor.type()) {
    case PaddleDType::INT32:
      tensor.copy_to_cpu(static_cast<int32_t *>(array.mutable_data()));
      break;
    case PaddleDType::INT64:
      tensor.copy_to_cpu(static_cast<int64_t *>(array.mutable_data()));
      break;
388 389 390
    case PaddleDType::FLOAT64:
      tensor.copy_to_cpu<double>(static_cast<double *>(array.mutable_data()));
      break;
391 392 393
    case PaddleDType::FLOAT32:
      tensor.copy_to_cpu<float>(static_cast<float *>(array.mutable_data()));
      break;
394
    case PaddleDType::FLOAT16:
395 396
      tensor.copy_to_cpu<phi::dtype::float16>(
          static_cast<phi::dtype::float16 *>(array.mutable_data()));
397
      break;
W
Wilber 已提交
398 399 400
    case PaddleDType::UINT8:
      tensor.copy_to_cpu<uint8_t>(static_cast<uint8_t *>(array.mutable_data()));
      break;
401 402 403
    case PaddleDType::INT8:
      tensor.copy_to_cpu<int8_t>(static_cast<int8_t *>(array.mutable_data()));
      break;
404 405 406
    case PaddleDType::BOOL:
      tensor.copy_to_cpu<bool>(static_cast<bool *>(array.mutable_data()));
      break;
407
    default:
408
      PADDLE_THROW(platform::errors::Unimplemented(
409 410
          "Unsupported data type. Now only supports INT32, INT64, FLOAT64, "
          "FLOAT32, FLOAT16, INT8, UINT8 and BOOL."));
411 412
  }
  return array;
413
}
414

W
Wilber 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427
py::array PaddleInferTensorToNumpy(paddle_infer::Tensor &tensor) {  // NOLINT
  py::dtype dt = PaddleDTypeToNumpyDType(tensor.type());
  auto tensor_shape = tensor.shape();
  py::array::ShapeContainer shape(tensor_shape.begin(), tensor_shape.end());
  py::array array(dt, std::move(shape));

  switch (tensor.type()) {
    case PaddleDType::INT32:
      tensor.CopyToCpu(static_cast<int32_t *>(array.mutable_data()));
      break;
    case PaddleDType::INT64:
      tensor.CopyToCpu(static_cast<int64_t *>(array.mutable_data()));
      break;
428 429 430
    case PaddleDType::FLOAT64:
      tensor.CopyToCpu<double>(static_cast<double *>(array.mutable_data()));
      break;
W
Wilber 已提交
431 432 433
    case PaddleDType::FLOAT32:
      tensor.CopyToCpu<float>(static_cast<float *>(array.mutable_data()));
      break;
434
    case PaddleDType::FLOAT16:
435 436
      tensor.CopyToCpu<phi::dtype::float16>(
          static_cast<phi::dtype::float16 *>(array.mutable_data()));
437
      break;
438 439 440 441 442 443
    case PaddleDType::UINT8:
      tensor.CopyToCpu(static_cast<uint8_t *>(array.mutable_data()));
      break;
    case PaddleDType::INT8:
      tensor.CopyToCpu(static_cast<int8_t *>(array.mutable_data()));
      break;
444 445 446
    case PaddleDType::BOOL:
      tensor.CopyToCpu(static_cast<bool *>(array.mutable_data()));
      break;
W
Wilber 已提交
447 448
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
449 450
          "Unsupported data t ype. Now only supports INT32, INT64, FLOAT64, "
          "FLOAT32, FLOAT16, INT8, UINT8 and BOOL."));
W
Wilber 已提交
451 452 453 454
  }
  return array;
}

455 456 457 458 459
py::bytes SerializePDTensorToBytes(PaddleTensor &tensor) {  // NOLINT
  std::stringstream ss;
  paddle::inference::SerializePDTensorToStream(&ss, tensor);
  return static_cast<py::bytes>(ss.str());
}
460

461
void CopyPaddleInferTensor(paddle_infer::Tensor &dst,  // NOLINT
462 463 464 465
                           const paddle_infer::Tensor &src) {
  return paddle_infer::contrib::TensorUtils::CopyTensor(&dst, src);
}

466
}  // namespace
467

F
flame 已提交
468 469
void BindInferenceApi(py::module *m) {
  BindPaddleDType(m);
470
  BindPaddleDataLayout(m);
F
flame 已提交
471 472 473 474 475 476
  BindPaddleBuf(m);
  BindPaddleTensor(m);
  BindPaddlePlace(m);
  BindPaddlePredictor(m);
  BindNativeConfig(m);
  BindNativePredictor(m);
477
  BindLiteNNAdapterConfig(m);
F
flame 已提交
478 479
  BindAnalysisConfig(m);
  BindAnalysisPredictor(m);
W
Wilber 已提交
480
  BindPaddleInferPredictor(m);
481
  BindZeroCopyTensor(m);
W
Wilber 已提交
482
  BindPaddleInferTensor(m);
483
  BindPaddlePassBuilder(m);
W
Wilber 已提交
484
  BindPredictorPool(m);
485 486 487
#ifdef PADDLE_WITH_MKLDNN
  BindMkldnnQuantizerConfig(m);
#endif
F
flame 已提交
488
  m->def("create_paddle_predictor",
W
Wilber 已提交
489 490
         &paddle::CreatePaddlePredictor<AnalysisConfig>,
         py::arg("config"));
F
flame 已提交
491
  m->def("create_paddle_predictor",
W
Wilber 已提交
492 493
         &paddle::CreatePaddlePredictor<NativeConfig>,
         py::arg("config"));
494 495 496 497 498 499 500
  m->def("create_predictor",
         [](const paddle_infer::Config &config)
             -> std::unique_ptr<paddle_infer::Predictor> {
           auto pred = std::unique_ptr<paddle_infer::Predictor>(
               new paddle_infer::Predictor(config));
           return pred;
         });
501 502 503 504 505 506
  m->def(
      "_get_phi_kernel_name",
      [](const std::string &fluid_op_name) {
        return phi::TransToPhiKernelName(fluid_op_name);
      },
      py::return_value_policy::reference);
507
  m->def("copy_tensor", &CopyPaddleInferTensor);
F
flame 已提交
508
  m->def("paddle_dtype_size", &paddle::PaddleDtypeSize);
509
  m->def("paddle_tensor_to_bytes", &SerializePDTensorToBytes);
W
Wilber 已提交
510
  m->def("get_version", &paddle_infer::GetVersion);
511 512
  m->def("get_trt_compile_version", &paddle_infer::GetTrtCompileVersion);
  m->def("get_trt_runtime_version", &paddle_infer::GetTrtRuntimeVersion);
W
Wilber 已提交
513
  m->def("get_num_bytes_of_data_type", &paddle_infer::GetNumBytesOfDataType);
514 515 516 517 518 519 520 521 522 523
  m->def("convert_to_mixed_precision_bind",
         &paddle_infer::ConvertToMixedPrecision,
         py::arg("model_file"),
         py::arg("params_file"),
         py::arg("mixed_model_file"),
         py::arg("mixed_params_file"),
         py::arg("mixed_precision"),
         py::arg("backend"),
         py::arg("keep_io_types") = true,
         py::arg("black_list") = std::unordered_set<std::string>());
F
flame 已提交
524 525
}

526
namespace {
F
flame 已提交
527 528
void BindPaddleDType(py::module *m) {
  py::enum_<PaddleDType>(*m, "PaddleDType")
529
      .value("FLOAT64", PaddleDType::FLOAT64)
F
flame 已提交
530
      .value("FLOAT32", PaddleDType::FLOAT32)
531
      .value("FLOAT16", PaddleDType::FLOAT16)
532
      .value("INT64", PaddleDType::INT64)
533 534 535 536
      .value("INT32", PaddleDType::INT32)
      .value("UINT8", PaddleDType::UINT8)
      .value("INT8", PaddleDType::INT8)
      .value("BOOL", PaddleDType::BOOL);
F
flame 已提交
537 538
}

539 540 541 542 543 544 545 546
void BindPaddleDataLayout(py::module *m) {
  py::enum_<PaddleDataLayout>(*m, "PaddleDataLayout")
      .value("UNK", PaddleDataLayout::kUNK)
      .value("Any", PaddleDataLayout::kAny)
      .value("NHWC", PaddleDataLayout::kNHWC)
      .value("NCHW", PaddleDataLayout::kNCHW);
}

F
flame 已提交
547 548 549 550 551 552
void BindPaddleBuf(py::module *m) {
  py::class_<PaddleBuf>(*m, "PaddleBuf")
      .def(py::init<size_t>())
      .def(py::init([](std::vector<float> &data) {
        auto buf = PaddleBuf(data.size() * sizeof(float));
        std::memcpy(buf.data(), static_cast<void *>(data.data()), buf.length());
G
Gabor Buella 已提交
553
        return buf;
F
flame 已提交
554
      }))
555 556 557
      .def(py::init(&PaddleBufCreate<int32_t>))
      .def(py::init(&PaddleBufCreate<int64_t>))
      .def(py::init(&PaddleBufCreate<float>))
F
flame 已提交
558 559 560 561 562 563
      .def("resize", &PaddleBuf::Resize)
      .def("reset",
           [](PaddleBuf &self, std::vector<float> &data) {
             self.Resize(data.size() * sizeof(float));
             std::memcpy(self.data(), data.data(), self.length());
           })
564 565 566
      .def("reset", &PaddleBufReset<int32_t>)
      .def("reset", &PaddleBufReset<int64_t>)
      .def("reset", &PaddleBufReset<float>)
567
      .def("empty", &PaddleBuf::empty)
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
      .def("tolist",
           [](PaddleBuf &self, const std::string &dtype) -> py::list {
             py::list l;
             if (dtype == "int32") {
               auto *data = static_cast<int32_t *>(self.data());
               auto size = self.length() / sizeof(int32_t);
               l = py::cast(std::vector<int32_t>(data, data + size));
             } else if (dtype == "int64") {
               auto *data = static_cast<int64_t *>(self.data());
               auto size = self.length() / sizeof(int64_t);
               l = py::cast(std::vector<int64_t>(data, data + size));
             } else if (dtype == "float32") {
               auto *data = static_cast<float *>(self.data());
               auto size = self.length() / sizeof(float);
               l = py::cast(std::vector<float>(data, data + size));
             } else {
584 585 586
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Unsupported data type. Now only supports INT32, INT64 and "
                   "FLOAT32."));
587 588 589
             }
             return l;
           })
F
flame 已提交
590 591 592 593 594 595 596 597 598 599
      .def("float_data",
           [](PaddleBuf &self) -> std::vector<float> {
             auto *data = static_cast<float *>(self.data());
             return {data, data + self.length() / sizeof(*data)};
           })
      .def("int64_data",
           [](PaddleBuf &self) -> std::vector<int64_t> {
             int64_t *data = static_cast<int64_t *>(self.data());
             return {data, data + self.length() / sizeof(*data)};
           })
600 601 602 603
      .def("int32_data",
           [](PaddleBuf &self) -> std::vector<int32_t> {
             int32_t *data = static_cast<int32_t *>(self.data());
             return {data, data + self.length() / sizeof(*data)};
F
flame 已提交
604 605 606 607 608 609 610
           })
      .def("length", &PaddleBuf::length);
}

void BindPaddleTensor(py::module *m) {
  py::class_<PaddleTensor>(*m, "PaddleTensor")
      .def(py::init<>())
W
Wilber 已提交
611 612
      .def(py::init(&PaddleTensorCreate<int32_t>),
           py::arg("data"),
613 614 615
           py::arg("name") = "",
           py::arg("lod") = std::vector<std::vector<size_t>>(),
           py::arg("copy") = true)
W
Wilber 已提交
616 617
      .def(py::init(&PaddleTensorCreate<int64_t>),
           py::arg("data"),
618 619 620
           py::arg("name") = "",
           py::arg("lod") = std::vector<std::vector<size_t>>(),
           py::arg("copy") = true)
W
Wilber 已提交
621 622
      .def(py::init(&PaddleTensorCreate<float>),
           py::arg("data"),
623 624 625 626
           py::arg("name") = "",
           py::arg("lod") = std::vector<std::vector<size_t>>(),
           py::arg("copy") = true)
      .def("as_ndarray", &PaddleTensorGetData)
F
flame 已提交
627 628 629 630 631 632 633 634 635 636 637
      .def_readwrite("name", &PaddleTensor::name)
      .def_readwrite("shape", &PaddleTensor::shape)
      .def_readwrite("data", &PaddleTensor::data)
      .def_readwrite("dtype", &PaddleTensor::dtype)
      .def_readwrite("lod", &PaddleTensor::lod);
}

void BindPaddlePlace(py::module *m) {
  py::enum_<PaddlePlace>(*m, "PaddlePlace")
      .value("UNK", PaddlePlace::kUNK)
      .value("CPU", PaddlePlace::kCPU)
638
      .value("GPU", PaddlePlace::kGPU)
W
Wilber 已提交
639
      .value("XPU", PaddlePlace::kXPU)
640 641
      .value("NPU", PaddlePlace::kNPU)
      .value("CUSTOM", PaddlePlace::kCUSTOM);
F
flame 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654
}

void BindPaddlePredictor(py::module *m) {
  auto paddle_predictor = py::class_<PaddlePredictor>(*m, "PaddlePredictor");
  paddle_predictor
      .def("run",
           [](PaddlePredictor &self, const std::vector<PaddleTensor> &inputs) {
             std::vector<PaddleTensor> outputs;
             self.Run(inputs, &outputs);
             return outputs;
           })
      .def("get_input_tensor", &PaddlePredictor::GetInputTensor)
      .def("get_output_tensor", &PaddlePredictor::GetOutputTensor)
655 656
      .def("get_input_names", &PaddlePredictor::GetInputNames)
      .def("get_output_names", &PaddlePredictor::GetOutputNames)
F
flame 已提交
657
      .def("zero_copy_run", &PaddlePredictor::ZeroCopyRun)
658
      .def("clone", [](PaddlePredictor &self) { return self.Clone(nullptr); })
659 660 661
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("clone",
           [](PaddlePredictor &self, phi::CUDAStream &stream) {
662
             return self.Clone(stream.raw_stream());
663 664
           })
#endif
665
      .def("get_serialized_program", &PaddlePredictor::GetSerializedProgram);
F
flame 已提交
666 667 668 669 670 671 672 673 674 675

  auto config = py::class_<PaddlePredictor::Config>(paddle_predictor, "Config");
  config.def(py::init<>())
      .def_readwrite("model_dir", &PaddlePredictor::Config::model_dir);
}

void BindNativeConfig(py::module *m) {
  py::class_<NativeConfig, PaddlePredictor::Config>(*m, "NativeConfig")
      .def(py::init<>())
      .def_readwrite("use_gpu", &NativeConfig::use_gpu)
676
      .def_readwrite("use_xpu", &NativeConfig::use_xpu)
W
Wilber 已提交
677
      .def_readwrite("use_npu", &NativeConfig::use_npu)
F
flame 已提交
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
      .def_readwrite("device", &NativeConfig::device)
      .def_readwrite("fraction_of_gpu_memory",
                     &NativeConfig::fraction_of_gpu_memory)
      .def_readwrite("prog_file", &NativeConfig::prog_file)
      .def_readwrite("param_file", &NativeConfig::param_file)
      .def_readwrite("specify_input_name", &NativeConfig::specify_input_name)
      .def("set_cpu_math_library_num_threads",
           &NativeConfig::SetCpuMathLibraryNumThreads)
      .def("cpu_math_library_num_threads",
           &NativeConfig::cpu_math_library_num_threads);
}

void BindNativePredictor(py::module *m) {
  py::class_<NativePaddlePredictor, PaddlePredictor>(*m,
                                                     "NativePaddlePredictor")
      .def(py::init<const NativeConfig &>())
      .def("init", &NativePaddlePredictor::Init)
      .def("run",
           [](NativePaddlePredictor &self,
              const std::vector<PaddleTensor> &inputs) {
             std::vector<PaddleTensor> outputs;
             self.Run(inputs, &outputs);
             return outputs;
           })
      .def("get_input_tensor", &NativePaddlePredictor::GetInputTensor)
      .def("get_output_tensor", &NativePaddlePredictor::GetOutputTensor)
      .def("zero_copy_run", &NativePaddlePredictor::ZeroCopyRun)
705 706
      .def("clone",
           [](NativePaddlePredictor &self) { return self.Clone(nullptr); })
707 708 709
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("clone",
           [](NativePaddlePredictor &self, phi::CUDAStream &stream) {
710
             return self.Clone(stream.raw_stream());
711 712
           })
#endif
W
Wilber 已提交
713 714
      .def("scope",
           &NativePaddlePredictor::scope,
F
flame 已提交
715 716 717 718
           py::return_value_policy::reference);
}

void BindAnalysisConfig(py::module *m) {
719 720 721 722 723
  py::class_<AnalysisConfig> analysis_config(*m, "AnalysisConfig");

  py::enum_<AnalysisConfig::Precision>(analysis_config, "Precision")
      .value("Float32", AnalysisConfig::Precision::kFloat32)
      .value("Int8", AnalysisConfig::Precision::kInt8)
Z
Zhaolong Xing 已提交
724
      .value("Half", AnalysisConfig::Precision::kHalf)
725 726 727
      .value("Bfloat16", AnalysisConfig::Precision::kBf16)
      .export_values();

728 729
  analysis_config.def(py::init<>())
      .def(py::init<const AnalysisConfig &>())
F
flame 已提交
730 731
      .def(py::init<const std::string &>())
      .def(py::init<const std::string &, const std::string &>())
732
      .def("summary", &AnalysisConfig::Summary)
W
Wilber 已提交
733 734 735
      .def("set_model",
           (void(AnalysisConfig::*)(const std::string &)) &
               AnalysisConfig::SetModel)
736 737 738
      .def("set_model",
           (void(AnalysisConfig::*)(const std::string &, const std::string &)) &
               AnalysisConfig::SetModel)
F
flame 已提交
739 740 741 742 743
      .def("set_prog_file", &AnalysisConfig::SetProgFile)
      .def("set_params_file", &AnalysisConfig::SetParamsFile)
      .def("model_dir", &AnalysisConfig::model_dir)
      .def("prog_file", &AnalysisConfig::prog_file)
      .def("params_file", &AnalysisConfig::params_file)
W
Wilber 已提交
744 745 746
      .def("enable_use_gpu",
           &AnalysisConfig::EnableUseGpu,
           py::arg("memory_pool_init_size_mb"),
747 748
           py::arg("device_id") = 0,
           py::arg("precision_mode") = AnalysisConfig::Precision::kFloat32)
749
      .def("exp_enable_use_cutlass", &AnalysisConfig::Exp_EnableUseCutlass)
750 751
      .def("exp_disable_mixed_precision_ops",
           &AnalysisConfig::Exp_DisableMixedPrecisionOps)
752 753 754 755 756 757
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("set_exec_stream",
           [](AnalysisConfig &self, phi::CUDAStream &stream) {
             self.SetExecStream(stream.raw_stream());
           })
#endif
W
Wilber 已提交
758 759
      .def("enable_xpu",
           &AnalysisConfig::EnableXpu,
W
Wilber 已提交
760
           py::arg("l3_workspace_size") = 16 * 1024 * 1024,
W
Wilber 已提交
761 762 763 764
           py::arg("locked") = false,
           py::arg("autotune") = true,
           py::arg("autotune_file") = "",
           py::arg("precision") = "int16",
765 766
           py::arg("adaptive_seqlen") = false,
           py::arg("enable_multi_stream") = false)
W
Wilber 已提交
767 768
      .def("set_xpu_device_id",
           &AnalysisConfig::SetXpuDeviceId,
769
           py::arg("device_id") = 0)
770 771 772
      .def("enable_custom_device",
           &AnalysisConfig::EnableCustomDevice,
           py::arg("device_type"),
773 774
           py::arg("device_id") = 0,
           py::arg("precision") = AnalysisConfig::Precision::kFloat32)
W
Wilber 已提交
775 776 777 778
      .def("enable_ipu",
           &AnalysisConfig::EnableIpu,
           py::arg("ipu_device_num") = 1,
           py::arg("ipu_micro_batch_size") = 1,
779 780
           py::arg("ipu_enable_pipelining") = false,
           py::arg("ipu_batches_per_step") = 1)
W
Wilber 已提交
781 782 783 784
      .def("set_ipu_config",
           &AnalysisConfig::SetIpuConfig,
           py::arg("ipu_enable_fp16") = false,
           py::arg("ipu_replica_num") = 1,
785
           py::arg("ipu_available_memory_proportion") = 1.0,
786 787
           py::arg("ipu_enable_half_partial") = false,
           py::arg("ipu_enable_model_runtime_executor") = false)
788 789 790 791 792 793 794 795
      .def("set_ipu_custom_info",
           &AnalysisConfig::SetIpuCustomInfo,
           py::arg("ipu_custom_ops_info") =
               std::vector<std::vector<std::string>>({}),
           py::arg("ipu_custom_patterns") = std::map<std::string, bool>({}))
      .def("load_ipu_config",
           &AnalysisConfig::LoadIpuConfig,
           py::arg("config_path"))
F
flame 已提交
796
      .def("disable_gpu", &AnalysisConfig::DisableGpu)
797 798 799
      .def("enable_onnxruntime", &AnalysisConfig::EnableONNXRuntime)
      .def("disable_onnxruntime", &AnalysisConfig::DisableONNXRuntime)
      .def("onnxruntime_enabled", &AnalysisConfig::use_onnxruntime)
800
      .def("use_opencl", &AnalysisConfig::use_opencl)
801
      .def("enable_ort_optimization", &AnalysisConfig::EnableORTOptimization)
F
flame 已提交
802
      .def("use_gpu", &AnalysisConfig::use_gpu)
803
      .def("use_xpu", &AnalysisConfig::use_xpu)
W
Wilber 已提交
804
      .def("use_npu", &AnalysisConfig::use_npu)
F
flame 已提交
805
      .def("gpu_device_id", &AnalysisConfig::gpu_device_id)
806
      .def("xpu_device_id", &AnalysisConfig::xpu_device_id)
W
Wilber 已提交
807
      .def("npu_device_id", &AnalysisConfig::npu_device_id)
F
flame 已提交
808 809 810 811
      .def("memory_pool_init_size_mb",
           &AnalysisConfig::memory_pool_init_size_mb)
      .def("fraction_of_gpu_memory_for_pool",
           &AnalysisConfig::fraction_of_gpu_memory_for_pool)
W
Wilber 已提交
812 813
      .def("switch_ir_optim",
           &AnalysisConfig::SwitchIrOptim,
F
flame 已提交
814 815
           py::arg("x") = true)
      .def("ir_optim", &AnalysisConfig::ir_optim)
W
Wilber 已提交
816 817
      .def("enable_memory_optim",
           &AnalysisConfig::EnableMemoryOptim,
818
           py::arg("x") = true)
819
      .def("enable_profile", &AnalysisConfig::EnableProfile)
820
      .def("disable_glog_info", &AnalysisConfig::DisableGlogInfo)
821
      .def("glog_info_disabled", &AnalysisConfig::glog_info_disabled)
822
      .def("set_optim_cache_dir", &AnalysisConfig::SetOptimCacheDir)
W
Wilber 已提交
823 824
      .def("switch_use_feed_fetch_ops",
           &AnalysisConfig::SwitchUseFeedFetchOps,
F
flame 已提交
825 826 827 828
           py::arg("x") = true)
      .def("use_feed_fetch_ops_enabled",
           &AnalysisConfig::use_feed_fetch_ops_enabled)
      .def("switch_specify_input_names",
W
Wilber 已提交
829 830
           &AnalysisConfig::SwitchSpecifyInputNames,
           py::arg("x") = true)
F
flame 已提交
831
      .def("specify_input_name", &AnalysisConfig::specify_input_name)
W
Wilber 已提交
832 833
      .def("enable_tensorrt_engine",
           &AnalysisConfig::EnableTensorRtEngine,
834
           py::arg("workspace_size") = 1 << 30,
W
Wilber 已提交
835
           py::arg("max_batch_size") = 1,
836
           py::arg("min_subgraph_size") = 3,
N
nhzlx 已提交
837
           py::arg("precision_mode") = AnalysisConfig::Precision::kFloat32,
W
Wilber 已提交
838 839
           py::arg("use_static") = false,
           py::arg("use_calib_mode") = true)
840 841 842 843
      .def("enable_tensorrt_memory_optim",
           &AnalysisConfig::EnableTensorRTMemoryOptim,
           py::arg("engine_memory_sharing") = true,
           py::arg("sharing_identifier") = 0)
844
      .def("tensorrt_precision_mode", &AnalysisConfig::tensorrt_precision_mode)
845 846
      .def("set_trt_dynamic_shape_info",
           &AnalysisConfig::SetTRTDynamicShapeInfo,
847 848 849 850 851
           py::arg("min_input_shape") =
               std::map<std::string, std::vector<int>>({}),
           py::arg("max_input_shape") =
               std::map<std::string, std::vector<int>>({}),
           py::arg("optim_input_shape") =
852 853
               std::map<std::string, std::vector<int>>({}),
           py::arg("disable_trt_plugin_fp16") = false)
854 855
      .def("tensorrt_dynamic_shape_enabled",
           &AnalysisConfig::tensorrt_dynamic_shape_enabled)
856 857 858
      .def("enable_tensorrt_varseqlen", &AnalysisConfig::EnableVarseqlen)
      .def("tensorrt_varseqlen_enabled",
           &AnalysisConfig::tensorrt_varseqlen_enabled)
859 860 861 862 863
      .def("collect_shape_range_info", &AnalysisConfig::CollectShapeRangeInfo)
      .def("shape_range_info_path", &AnalysisConfig::shape_range_info_path)
      .def("shape_range_info_collected",
           &AnalysisConfig::shape_range_info_collected)
      .def("enable_tuned_tensorrt_dynamic_shape",
864 865 866
           &AnalysisConfig::EnableTunedTensorRtDynamicShape,
           py::arg("shape_range_info_path") = "",
           py::arg("allow_build_at_runtime") = true)
867 868 869 870
      .def("tuned_tensorrt_dynamic_shape",
           &AnalysisConfig::tuned_tensorrt_dynamic_shape)
      .def("trt_allow_build_at_runtime",
           &AnalysisConfig::trt_allow_build_at_runtime)
871
      .def("exp_disable_tensorrt_ops", &AnalysisConfig::Exp_DisableTensorRtOPs)
W
Wilber 已提交
872 873
      .def("enable_tensorrt_dla",
           &AnalysisConfig::EnableTensorRtDLA,
874 875
           py::arg("dla_core") = 0)
      .def("tensorrt_dla_enabled", &AnalysisConfig::tensorrt_dla_enabled)
876 877 878 879
      .def("enable_tensorrt_inspector",
           &AnalysisConfig::EnableTensorRtInspector)
      .def("tensorrt_inspector_enabled",
           &AnalysisConfig::tensorrt_inspector_enabled)
F
flame 已提交
880
      .def("tensorrt_engine_enabled", &AnalysisConfig::tensorrt_engine_enabled)
W
Wilber 已提交
881 882
      .def("enable_dlnne",
           &AnalysisConfig::EnableDlnne,
D
denglin-github 已提交
883 884 885 886 887 888 889 890 891 892
           py::arg("min_subgraph_size") = 3,
           py::arg("max_batch_size") = 1,
           py::arg("use_static_batch") = false,
           py::arg("weight_share_mode") = "0",
           py::arg("disable_nodes_by_outputs") =
               std::unordered_set<std::string>(),
           py::arg("input_shape_dict") =
               std::map<std::string, std::vector<int64_t>>(),
           py::arg("use_calib_mode") = false,
           py::arg("precision_mode") = AnalysisConfig::Precision::kFloat32)
W
Wilber 已提交
893 894
      .def("enable_lite_engine",
           &AnalysisConfig::EnableLiteEngine,
895
           py::arg("precision_mode") = AnalysisConfig::Precision::kFloat32,
W
Wilber 已提交
896
           py::arg("zero_copy") = false,
897 898
           py::arg("passes_filter") = std::vector<std::string>(),
           py::arg("ops_filter") = std::vector<std::string>())
899
      .def("enable_opencl", &AnalysisConfig::EnableOpenCL)
900
      .def("lite_engine_enabled", &AnalysisConfig::lite_engine_enabled)
W
Wilber 已提交
901 902
      .def("switch_ir_debug",
           &AnalysisConfig::SwitchIrDebug,
F
flame 已提交
903 904 905 906 907 908 909 910
           py::arg("x") = true)
      .def("enable_mkldnn", &AnalysisConfig::EnableMKLDNN)
      .def("mkldnn_enabled", &AnalysisConfig::mkldnn_enabled)
      .def("set_cpu_math_library_num_threads",
           &AnalysisConfig::SetCpuMathLibraryNumThreads)
      .def("cpu_math_library_num_threads",
           &AnalysisConfig::cpu_math_library_num_threads)
      .def("to_native_config", &AnalysisConfig::ToNativeConfig)
911
      .def("enable_quantizer", &AnalysisConfig::EnableMkldnnQuantizer)
912
      .def("enable_mkldnn_bfloat16", &AnalysisConfig::EnableMkldnnBfloat16)
913
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
914 915
      .def("quantizer_config",
           &AnalysisConfig::mkldnn_quantizer_config,
916
           py::return_value_policy::reference)
W
Wilber 已提交
917 918
      .def("set_mkldnn_cache_capacity",
           &AnalysisConfig::SetMkldnnCacheCapacity,
919
           py::arg("capacity") = 0)
920
      .def("set_bfloat16_op", &AnalysisConfig::SetBfloat16Op)
W
Wilber 已提交
921 922
      .def("enable_mkldnn_int8",
           &AnalysisConfig::EnableMkldnnInt8,
B
baoachun 已提交
923 924 925
           py::arg("mkldnn_int8_enabled_op_types") =
               std::unordered_set<std::string>({}))
      .def("mkldnn_int8_enabled", &AnalysisConfig::mkldnn_int8_enabled)
P
Paulina Gacek 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
      .def("disable_mkldnn_fc_passes",
           &AnalysisConfig::DisableMkldnnFcPasses,
           R"DOC(
           Disable Mkldnn FC
           Args:
                None.
           Returns:
                None.
           Examples:
               .. code-block:: python
                from paddle.inference import Config

                config = Config("")
                config.enable_mkldnn()
                config.disable_mkldnn_fc_passes()
           )DOC")
942
#endif
F
flame 已提交
943 944 945
      .def("set_mkldnn_op", &AnalysisConfig::SetMKLDNNOp)
      .def("set_model_buffer", &AnalysisConfig::SetModelBuffer)
      .def("model_from_memory", &AnalysisConfig::model_from_memory)
946 947 948 949
      .def("delete_pass",
           [](AnalysisConfig &self, const std::string &pass) {
             self.pass_builder()->DeletePass(pass);
           })
950 951 952 953 954 955
      .def(
          "pass_builder",
          [](AnalysisConfig &self) {
            return dynamic_cast<PaddlePassBuilder *>(self.pass_builder());
          },
          py::return_value_policy::reference)
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
      .def("nnadapter", &AnalysisConfig::NNAdapter)
      .def("set_dist_config", &AnalysisConfig::SetDistConfig)
      .def("dist_config", &AnalysisConfig::dist_config);

  py::class_<DistConfig>(*m, "DistConfig")
      .def(py::init<>())
      .def("set_carrier_id", &DistConfig::SetCarrierId)
      .def("set_comm_init_config", &DistConfig::SetCommInitConfig)
      .def("set_endpoints", &DistConfig::SetEndpoints)
      .def("set_ranks", &DistConfig::SetRanks)
      .def("enable_dist_model", &DistConfig::EnableDistModel)
      .def("carrier_id", &DistConfig::carrier_id)
      .def("current_endpoint", &DistConfig::current_endpoint)
      .def("trainer_endpoints", &DistConfig::trainer_endpoints)
      .def("nranks", &DistConfig::nranks)
      .def("rank", &DistConfig::rank)
      .def("comm_init_config", &DistConfig::comm_init_config)
      .def("use_dist_model", &DistConfig::use_dist_model);
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
}

void BindLiteNNAdapterConfig(py::module *m) {
  py::class_<LiteNNAdapterConfig> lite_nnadapter_config(*m,
                                                        "LiteNNAdapterConfig");

  lite_nnadapter_config
      .def("set_device_names", &LiteNNAdapterConfig::SetDeviceNames)
      .def("set_context_properties", &LiteNNAdapterConfig::SetContextProperties)
      .def("set_model_cache_dir", &LiteNNAdapterConfig::SetModelCacheDir)
      .def("set_model_cache_buffers",
           &LiteNNAdapterConfig::SetModelCacheBuffers)
      .def("set_subgraph_partition_config_path",
           &LiteNNAdapterConfig::SetSubgraphPartitionConfigPath)
      .def("set_subgraph_partition_config_buffer",
           &LiteNNAdapterConfig::SetSubgraphPartitionConfigBuffer)
      .def("enable", &LiteNNAdapterConfig::Enable)
      .def("disable", &LiteNNAdapterConfig::Disable);
F
flame 已提交
992 993
}

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
#ifdef PADDLE_WITH_MKLDNN
void BindMkldnnQuantizerConfig(py::module *m) {
  py::class_<MkldnnQuantizerConfig> quantizer_config(*m,
                                                     "MkldnnQuantizerConfig");
  quantizer_config.def(py::init<const MkldnnQuantizerConfig &>())
      .def(py::init<>())
      .def("set_quant_data",
           [](MkldnnQuantizerConfig &self,
              const std::vector<PaddleTensor> &data) {
             auto warmup_data =
                 std::make_shared<std::vector<PaddleTensor>>(data);
             self.SetWarmupData(warmup_data);
             return;
           })
      .def("set_quant_batch_size", &MkldnnQuantizerConfig::SetWarmupBatchSize)
1009
      .def("set_enabled_op_types", &MkldnnQuantizerConfig::SetEnabledOpTypes);
1010 1011 1012
}
#endif

F
flame 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
void BindAnalysisPredictor(py::module *m) {
  py::class_<AnalysisPredictor, PaddlePredictor>(*m, "AnalysisPredictor")
      .def(py::init<const AnalysisConfig &>())
      .def("init", &AnalysisPredictor::Init)
      .def(
          "run",
          [](AnalysisPredictor &self, const std::vector<PaddleTensor> &inputs) {
            std::vector<PaddleTensor> outputs;
            self.Run(inputs, &outputs);
            return outputs;
          })
      .def("get_input_tensor", &AnalysisPredictor::GetInputTensor)
      .def("get_output_tensor", &AnalysisPredictor::GetOutputTensor)
1026 1027 1028
      .def("get_input_names", &AnalysisPredictor::GetInputNames)
      .def("get_output_names", &AnalysisPredictor::GetOutputNames)
      .def("get_input_tensor_shape", &AnalysisPredictor::GetInputTensorShape)
F
flame 已提交
1029
      .def("zero_copy_run", &AnalysisPredictor::ZeroCopyRun)
1030 1031
      .def("clear_intermediate_tensor",
           &AnalysisPredictor::ClearIntermediateTensor)
1032
      .def("try_shrink_memory", &AnalysisPredictor::TryShrinkMemory)
1033 1034 1035 1036 1037
      .def("create_feed_fetch_var", &AnalysisPredictor::CreateFeedFetchVar)
      .def("prepare_feed_fetch", &AnalysisPredictor::PrepareFeedFetch)
      .def("prepare_argument", &AnalysisPredictor::PrepareArgument)
      .def("optimize_inference_program",
           &AnalysisPredictor::OptimizeInferenceProgram)
W
Wilber 已提交
1038 1039
      .def("analysis_argument",
           &AnalysisPredictor::analysis_argument,
1040
           py::return_value_policy::reference)
1041
      .def("clone", [](AnalysisPredictor &self) { return self.Clone(nullptr); })
1042 1043 1044
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("clone",
           [](AnalysisPredictor &self, phi::CUDAStream &stream) {
1045
             return self.Clone(stream.raw_stream());
1046 1047
           })
#endif
W
Wilber 已提交
1048 1049
      .def("scope",
           &AnalysisPredictor::scope,
1050
           py::return_value_policy::reference)
W
Wilber 已提交
1051 1052
      .def("program",
           &AnalysisPredictor::program,
1053 1054 1055
           py::return_value_policy::reference)
      .def("get_serialized_program", &AnalysisPredictor::GetSerializedProgram)
      .def("mkldnn_quantize", &AnalysisPredictor::MkldnnQuantize)
W
Wilber 已提交
1056 1057
      .def(
          "SaveOptimModel", &AnalysisPredictor::SaveOptimModel, py::arg("dir"));
F
flame 已提交
1058
}
1059

W
Wilber 已提交
1060 1061 1062 1063 1064 1065 1066
void BindPaddleInferPredictor(py::module *m) {
  py::class_<paddle_infer::Predictor>(*m, "PaddleInferPredictor")
      .def(py::init<const paddle_infer::Config &>())
      .def("get_input_names", &paddle_infer::Predictor::GetInputNames)
      .def("get_output_names", &paddle_infer::Predictor::GetOutputNames)
      .def("get_input_handle", &paddle_infer::Predictor::GetInputHandle)
      .def("get_output_handle", &paddle_infer::Predictor::GetOutputHandle)
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
      .def(
          "run",
          [](paddle_infer::Predictor &self, py::handle py_in_tensor_list) {
            auto in_tensor_list =
                CastPyArg2VectorOfTensor(py_in_tensor_list.ptr(), 0);
            std::vector<paddle::Tensor> outputs;
            self.Run(in_tensor_list, &outputs);
            return py::handle(ToPyObject(outputs));
          },
          py::arg("inputs"))
1077
      .def("run", [](paddle_infer::Predictor &self) { self.Run(); })
1078 1079
      .def("clone",
           [](paddle_infer::Predictor &self) { return self.Clone(nullptr); })
1080 1081 1082
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("clone",
           [](paddle_infer::Predictor &self, phi::CUDAStream &stream) {
1083
             return self.Clone(stream.raw_stream());
1084 1085
           })
#endif
1086
      .def("try_shrink_memory", &paddle_infer::Predictor::TryShrinkMemory)
W
Wilber 已提交
1087
      .def("clear_intermediate_tensor",
1088 1089 1090
           &paddle_infer::Predictor::ClearIntermediateTensor)
      .def("register_output_hook",
           &paddle_infer::Predictor::RegisterOutputHook);
W
Wilber 已提交
1091 1092
}

1093 1094
void BindZeroCopyTensor(py::module *m) {
  py::class_<ZeroCopyTensor>(*m, "ZeroCopyTensor")
W
Wilber 已提交
1095 1096 1097 1098 1099 1100
      .def(
          "reshape",
          py::overload_cast<const std::vector<int> &>(&ZeroCopyTensor::Reshape))
      .def("reshape",
           py::overload_cast<const std::size_t &>(
               &paddle_infer::Tensor::ReshapeStrings))
1101 1102
      .def("copy_from_cpu", &ZeroCopyTensorCreate<int8_t>)
      .def("copy_from_cpu", &ZeroCopyTensorCreate<uint8_t>)
1103 1104 1105
      .def("copy_from_cpu", &ZeroCopyTensorCreate<int32_t>)
      .def("copy_from_cpu", &ZeroCopyTensorCreate<int64_t>)
      .def("copy_from_cpu", &ZeroCopyTensorCreate<float>)
1106
      .def("copy_from_cpu", &ZeroCopyTensorCreate<phi::dtype::float16>)
Y
Yuanle Liu 已提交
1107 1108
      // NOTE(liuyuanle): double must be bound after float.
      .def("copy_from_cpu", &ZeroCopyTensorCreate<double>)
1109
      .def("copy_from_cpu", &ZeroCopyTensorCreate<bool>)
S
Steffy-zxf 已提交
1110
      .def("copy_from_cpu", &ZeroCopyStringTensorCreate)
1111 1112 1113 1114 1115 1116 1117
      .def("copy_to_cpu", &ZeroCopyTensorToNumpy)
      .def("shape", &ZeroCopyTensor::shape)
      .def("set_lod", &ZeroCopyTensor::SetLoD)
      .def("lod", &ZeroCopyTensor::lod)
      .def("type", &ZeroCopyTensor::type);
}

W
Wilber 已提交
1118 1119
void BindPaddleInferTensor(py::module *m) {
  py::class_<paddle_infer::Tensor>(*m, "PaddleInferTensor")
W
Wilber 已提交
1120 1121 1122 1123 1124 1125
      .def("reshape",
           py::overload_cast<const std::vector<int> &>(
               &paddle_infer::Tensor::Reshape))
      .def("reshape",
           py::overload_cast<const std::size_t &>(
               &paddle_infer::Tensor::ReshapeStrings))
1126 1127 1128 1129 1130
      .def("_copy_from_cpu_bind", &PaddleInferTensorCreate<int8_t>)
      .def("_copy_from_cpu_bind", &PaddleInferTensorCreate<uint8_t>)
      .def("_copy_from_cpu_bind", &PaddleInferTensorCreate<int32_t>)
      .def("_copy_from_cpu_bind", &PaddleInferTensorCreate<int64_t>)
      .def("_copy_from_cpu_bind", &PaddleInferTensorCreate<float>)
1131
      .def("_copy_from_cpu_bind", &PaddleInferTensorCreate<phi::dtype::float16>)
Y
Yuanle Liu 已提交
1132 1133
      // NOTE(liuyuanle): double must be bound after float.
      .def("_copy_from_cpu_bind", &PaddleInferTensorCreate<double>)
1134 1135 1136 1137 1138 1139 1140 1141 1142
      .def("_copy_from_cpu_bind", &PaddleInferTensorCreate<bool>)
      .def("_copy_from_cpu_bind", &PaddleInferStringTensorCreate)
      .def("_share_external_data_bind", &PaddleInferShareExternalData)
      .def("_share_external_data_paddle_tensor_bind",
           [](paddle_infer::Tensor &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             PaddleTensorShareExternalData(self,
                                           std::move(CastPyArg2Tensor(obj, 0)));
           })
W
Wilber 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
      .def("copy_to_cpu", &PaddleInferTensorToNumpy)
      .def("shape", &paddle_infer::Tensor::shape)
      .def("set_lod", &paddle_infer::Tensor::SetLoD)
      .def("lod", &paddle_infer::Tensor::lod)
      .def("type", &paddle_infer::Tensor::type);
}

void BindPredictorPool(py::module *m) {
  py::class_<paddle_infer::services::PredictorPool>(*m, "PredictorPool")
      .def(py::init<const paddle_infer::Config &, size_t>())
W
Wilber 已提交
1153 1154
      .def("retrive",
           &paddle_infer::services::PredictorPool::Retrive,
W
Wilber 已提交
1155 1156 1157
           py::return_value_policy::reference);
}

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
void BindPaddlePassBuilder(py::module *m) {
  py::class_<PaddlePassBuilder>(*m, "PaddlePassBuilder")
      .def(py::init<const std::vector<std::string> &>())
      .def("set_passes",
           [](PaddlePassBuilder &self, const std::vector<std::string> &passes) {
             self.ClearPasses();
             for (auto pass : passes) {
               self.AppendPass(std::move(pass));
             }
           })
      .def("append_pass", &PaddlePassBuilder::AppendPass)
      .def("insert_pass", &PaddlePassBuilder::InsertPass)
      .def("delete_pass",
           [](PaddlePassBuilder &self, const std::string &pass_type) {
             self.DeletePass(pass_type);
           })
      .def("append_analysis_pass", &PaddlePassBuilder::AppendAnalysisPass)
      .def("turn_on_debug", &PaddlePassBuilder::TurnOnDebug)
      .def("debug_string", &PaddlePassBuilder::DebugString)
W
Wilber 已提交
1177 1178
      .def("all_passes",
           &PaddlePassBuilder::AllPasses,
1179 1180 1181 1182 1183 1184 1185 1186
           py::return_value_policy::reference)
      .def("analysis_passes", &PaddlePassBuilder::AnalysisPasses);

  py::class_<PassStrategy, PaddlePassBuilder>(*m, "PassStrategy")
      .def(py::init<const std::vector<std::string> &>())
      .def("enable_cudnn", &PassStrategy::EnableCUDNN)
      .def("enable_mkldnn", &PassStrategy::EnableMKLDNN)
      .def("enable_mkldnn_quantizer", &PassStrategy::EnableMkldnnQuantizer)
1187
      .def("enable_mkldnn_bfloat16", &PassStrategy::EnableMkldnnBfloat16)
1188 1189 1190 1191 1192 1193 1194
      .def("use_gpu", &PassStrategy::use_gpu);

  py::class_<CpuPassStrategy, PassStrategy>(*m, "CpuPassStrategy")
      .def(py::init<>())
      .def(py::init<const CpuPassStrategy &>())
      .def("enable_cudnn", &CpuPassStrategy::EnableCUDNN)
      .def("enable_mkldnn", &CpuPassStrategy::EnableMKLDNN)
1195 1196
      .def("enable_mkldnn_quantizer", &CpuPassStrategy::EnableMkldnnQuantizer)
      .def("enable_mkldnn_bfloat16", &CpuPassStrategy::EnableMkldnnBfloat16);
1197 1198 1199 1200 1201 1202

  py::class_<GpuPassStrategy, PassStrategy>(*m, "GpuPassStrategy")
      .def(py::init<>())
      .def(py::init<const GpuPassStrategy &>())
      .def("enable_cudnn", &GpuPassStrategy::EnableCUDNN)
      .def("enable_mkldnn", &GpuPassStrategy::EnableMKLDNN)
1203 1204
      .def("enable_mkldnn_quantizer", &GpuPassStrategy::EnableMkldnnQuantizer)
      .def("enable_mkldnn_bfloat16", &GpuPassStrategy::EnableMkldnnBfloat16);
1205
}
1206
}  // namespace
F
flame 已提交
1207 1208
}  // namespace pybind
}  // namespace paddle