data_norm_op.cc 32.5 KB
Newer Older
H
heqiaozhi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/data_norm_op.h"
16

P
phlrain 已提交
17
#include <memory>
H
heqiaozhi 已提交
18
#include <string>
19

H
heqiaozhi 已提交
20
#include "paddle/fluid/framework/data_layout.h"
H
heqiaozhi 已提交
21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
24
#include "paddle/fluid/framework/op_version_registry.h"
H
heqiaozhi 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

template <typename T>
using EigenArrayMap =
    Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using ConstEigenArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<T, Eigen::Dynamic, 1>>;
template <typename T>
using ConstEigenVectorArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, 1>>;

class DataNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
50
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "DataNorm");
51 52
    OP_INOUT_CHECK(
        ctx->HasInput("BatchSize"), "Input", "BatchSize", "DataNorm");
53
    OP_INOUT_CHECK(ctx->HasInput("BatchSum"), "Input", "BatchSum", "DataNorm");
54 55
    OP_INOUT_CHECK(
        ctx->HasInput("BatchSquareSum"), "Input", "BatchSquareSum", "DataNorm");
56 57 58
    OP_INOUT_CHECK(ctx->HasOutput("Means"), "Output", "Means", "DataNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Scales"), "Output", "Scales", "DataNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "DataNorm");
59 60 61 62
    bool enable_scale_and_shift =
        ctx->Attrs().Get<bool>("enable_scale_and_shift");
    if (enable_scale_and_shift) {
      PADDLE_ENFORCE_EQ(
63 64
          ctx->HasInput("scale_w"),
          true,
65 66
          platform::errors::InvalidArgument(
              "Input(scale_w) of DataNormOp should not be null."));
67 68
      PADDLE_ENFORCE_EQ(ctx->HasInput("bias"),
                        true,
69 70 71
                        platform::errors::InvalidArgument(
                            "Input(bias) of DataNormOp should not be null."));
    }
H
heqiaozhi 已提交
72 73 74 75 76

    const auto x_dims = ctx->GetInputDim("X");
    const DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));

77 78
    PADDLE_ENFORCE_EQ(x_dims.size() >= 2 && x_dims.size() <= 5,
                      true,
79 80
                      platform::errors::InvalidArgument(
                          "Input X must have 2 to 5 dimensions."));
H
heqiaozhi 已提交
81 82 83 84 85

    const int64_t C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);

86 87
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSize").size(),
                      1UL,
88 89
                      platform::errors::InvalidArgument(
                          "The input dim of BatchSize shouold be 1"));
90 91
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSum").size(),
                      1UL,
92 93
                      platform::errors::InvalidArgument(
                          "The input dim of BatchSum shouold be 1"));
94 95
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSquareSum").size(),
                      1UL,
96 97
                      platform::errors::InvalidArgument(
                          "The input dim of BatchSquareSum shouold be 1"));
P
phlrain 已提交
98
    if (ctx->IsRuntime()) {
99 100
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSize")[0],
                        C,
101 102
                        platform::errors::InvalidArgument(
                            "The input dim[0] of BatchSize shouold be C"));
103 104
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSum")[0],
                        C,
105 106
                        platform::errors::InvalidArgument(
                            "The input dim[0] of BatchSum shouold be C"));
107 108
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSquareSum")[0],
                        C,
109 110
                        platform::errors::InvalidArgument(
                            "The input dim[0] of BatchSqureSum shouold be C"));
P
phlrain 已提交
111
    }
H
heqiaozhi 已提交
112

113 114 115 116 117
    if (enable_scale_and_shift) {
      auto scale_dim = ctx->GetInputDim("scale_w");
      auto bias_dim = ctx->GetInputDim("bias");

      PADDLE_ENFORCE_EQ(
118 119
          scale_dim.size(),
          1UL,
120 121 122 123
          platform::errors::InvalidArgument("the dimensionof scale"
                                            "must equal to 1. But received: "
                                            "the shape of scale is [%s], "
                                            "the dimensionof scale is [%d]",
124 125
                                            scale_dim,
                                            scale_dim.size()));
126
      PADDLE_ENFORCE_EQ(
127 128
          bias_dim.size(),
          1UL,
129 130 131 132
          platform::errors::InvalidArgument("the dimension of bias"
                                            "must equal to 1. But received: "
                                            "the shape of bias is [%s],"
                                            "the dimension of bias is [%d]",
133 134
                                            bias_dim,
                                            bias_dim.size()));
135 136

      bool check = true;
137
      if ((!ctx->IsRuntime()) &&
138
          (phi::product(scale_dim) <= 0 || phi::product(bias_dim) <= 0)) {
139 140 141 142
        check = false;
      }

      if (check) {
143 144
        PADDLE_ENFORCE_EQ(scale_dim[0],
                          C,
145 146 147
                          platform::errors::InvalidArgument(
                              "the shape of scale must equal to [%d]"
                              "But received: the shape of scale is [%d]",
148 149 150 151
                              C,
                              scale_dim[0]));
        PADDLE_ENFORCE_EQ(bias_dim[0],
                          C,
152 153 154
                          platform::errors::InvalidArgument(
                              "the shape of bias must equal to [%d]"
                              "But received: the shape of bias is [%d]",
155 156
                              C,
                              bias_dim[0]));
157 158 159
      }
    }

H
heqiaozhi 已提交
160 161 162 163 164 165 166 167 168
    ctx->SetOutputDim("Y", x_dims);
    ctx->SetOutputDim("Means", {C});
    ctx->SetOutputDim("Scales", {C});
    ctx->ShareLoD("X", "Y");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
169
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
H
heqiaozhi 已提交
170 171 172 173 174 175 176
    // By default, the type of the scale, bias, mean,
    // and var tensors should both be float. (For float or float16 input tensor)
    // or double (For double input tensor).
    auto dn_param_type = framework::proto::VarType::FP32;
    if (input_data_type == framework::proto::VarType::FP64) {
      dn_param_type = framework::proto::VarType::FP64;
    }
177 178
    PADDLE_ENFORCE_EQ(dn_param_type,
                      OperatorWithKernel::IndicateVarDataType(ctx, "BatchSize"),
179 180
                      platform::errors::InvalidArgument(
                          "BatchSize input should be of float type"));
H
heqiaozhi 已提交
181
    PADDLE_ENFORCE_EQ(dn_param_type,
182
                      OperatorWithKernel::IndicateVarDataType(ctx, "BatchSum"),
183 184
                      platform::errors::InvalidArgument(
                          "BatchSum input should be of float type"));
185 186 187 188 189
    PADDLE_ENFORCE_EQ(
        dn_param_type,
        OperatorWithKernel::IndicateVarDataType(ctx, "BatchSquareSum"),
        platform::errors::InvalidArgument(
            "BatchSquareSum input should be of float type"));
H
heqiaozhi 已提交
190

191 192 193 194 195 196 197 198 199 200 201
    bool enable_scale_and_shift = ctx.Attr<bool>("enable_scale_and_shift");
    if (enable_scale_and_shift) {
      PADDLE_ENFORCE_EQ(dn_param_type,
                        OperatorWithKernel::IndicateVarDataType(ctx, "scale_w"),
                        platform::errors::InvalidArgument(
                            "scale_w input should be of float type"));
      PADDLE_ENFORCE_EQ(dn_param_type,
                        OperatorWithKernel::IndicateVarDataType(ctx, "bias"),
                        platform::errors::InvalidArgument(
                            "bias input should be of float type"));
    }
H
heqiaozhi 已提交
202
    // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
H
heqiaozhi 已提交
203
#ifdef PADDLE_WITH_MKLDNN
204 205 206 207 208
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type,
                                     ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
H
heqiaozhi 已提交
209 210
    }
#endif
H
heqiaozhi 已提交
211

212
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
H
heqiaozhi 已提交
213 214 215 216 217 218 219 220 221 222
  }
};

class DataNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    // AddAttr<bool>("is_test", "").SetDefault(false);
    AddAttr<float>("epsilon", "")
        .SetDefault(1e-4)
        .AddCustomChecker([](const float &epsilon) {
223 224
          PADDLE_ENFORCE_EQ(epsilon >= 0.0f && epsilon <= 0.001f,
                            true,
225 226
                            platform::errors::InvalidArgument(
                                "'epsilon' should be between 0.0 and 0.001."));
H
heqiaozhi 已提交
227
        });
228 229 230 231
    AddAttr<int>("slot_dim",
                 "(int, default -1) Dimension of one slot if set, "
                 "when the input is concated by slot-wise embeddings")
        .SetDefault(-1);
H
hutuxian 已提交
232 233 234 235
    AddAttr<float>(
        "summary_decay_rate",
        "(float, default 0.9999999) The decay rate when update the summary")
        .SetDefault(0.9999999);
236 237 238 239 240 241 242 243 244 245 246 247 248
    AddAttr<bool>(
        "enable_scale_and_shift",
        "(bool, default false) Set to true to enable scale and shift such as "
        "batch_norm op")
        .SetDefault(false);
    AddInput("scale_w",
             "scale_w is a 1-dimensional tensor of size C "
             "that is applied to the output")
        .AsDispensable();
    AddInput("bias",
             "bias is a 1-dimensional tensor of size C "
             "that is applied to the output")
        .AsDispensable();
H
heqiaozhi 已提交
249
    AddAttr<std::string>("data_layout", "").SetDefault("NCHW");
H
hutuxian 已提交
250 251
    AddAttr<bool>("sync_stats", "(bool, default false) only used in multi-GPU")
        .SetDefault(false);
H
heqiaozhi 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    AddInput("X", "The input tensor");
    AddInput("BatchSize",
             "BatchSize is a 1-dimensional tensor of size C "
             "that is applied to the output");
    AddInput("BatchSum",
             "BatchSum is a 1-dimensional tensor of size C "
             "that is applied to the output");
    AddInput("BatchSquareSum",
             "The global BatchSquareSum (for training) or "
             "estimated BatchSquareSum (for testing)");
    AddOutput("Y", "result after normalization");
    AddOutput("Means",
              "Mean of the history data batch, "
              "will apply to output when training")
        .AsIntermediate();
    AddOutput("Scales",
              "Scales of the history data batch, "
              "will apply to output when training")
        .AsIntermediate();
    AddComment(R"DOC(
Data Normalization.

Can be used as a normalizer function for data
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`

)DOC");
  }
};

template <typename T>
L
Leo Chen 已提交
284
class DataNormKernel<phi::CPUContext, T> : public framework::OpKernel<T> {
H
heqiaozhi 已提交
285 286 287 288 289 290 291 292 293
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    // const bool is_test = ctx.Attr<bool>("is_test");
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);

    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
294
    PADDLE_ENFORCE_EQ(
295 296
        x_dims.size(),
        2,
297
        platform::errors::InvalidArgument("The Input dim size should be 2"));
H
heqiaozhi 已提交
298 299 300 301 302 303 304 305 306
    const int N = x_dims[0];
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("Means");
    auto *scales = ctx.Output<Tensor>("Scales");

    // alloc memory
307
    T *y_data = y->mutable_data<T>(ctx.GetPlace());
H
heqiaozhi 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321

    ConstEigenVectorArrayMap<T> b_size_arr(
        ctx.Input<Tensor>("BatchSize")->data<T>(), C);
    ConstEigenVectorArrayMap<T> b_sum_arr(
        ctx.Input<Tensor>("BatchSum")->data<T>(), C);
    ConstEigenVectorArrayMap<T> b_square_sum_arr(
        ctx.Input<Tensor>("BatchSquareSum")->data<T>(), C);
    EigenVectorArrayMap<T> means_arr(mean_out->mutable_data<T>(ctx.GetPlace()),
                                     C);
    EigenVectorArrayMap<T> scales_arr(scales->mutable_data<T>(ctx.GetPlace()),
                                      C);
    means_arr = b_sum_arr / b_size_arr;
    scales_arr = (b_size_arr / b_square_sum_arr).sqrt();

322 323
    const T *means_data = mean_out->data<T>();
    const T *x_data = x->data<T>();
324

325 326 327
    const T *scales_data = scales->data<T>();
    const int slot_dim = ctx.Attr<int>("slot_dim");
    T min_precision = 1e-7f;
H
heqiaozhi 已提交
328
    switch (data_layout) {
329
      case DataLayout::kNCHW:  // It's two dimensions, so make no difference
H
heqiaozhi 已提交
330
      case DataLayout::kNHWC: {
331 332
        // if slot_dim is set and batch size is larger than zero, we choose
        // to check if show number is zero, if so, skip normalization.
333 334
        if (slot_dim > 0 && N > 0 &&
            (!ctx.Attr<bool>("enable_scale_and_shift"))) {
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
          const int item_size = x->numel() / N;
          // location of show number in one embedding
          int offset = 0;
          for (int k = 0; k < N; ++k) {
            for (int i = 0; i < item_size; i += slot_dim) {
              if (x_data[offset + i] > -min_precision &&
                  x_data[offset + i] < min_precision) {
                // show = 0
                memset(y_data + offset + i, 0, sizeof(T) * slot_dim);
              } else {
                for (int j = i; j < i + slot_dim; ++j) {
                  y_data[offset + j] =
                      (x_data[offset + j] - means_data[j]) * scales_data[j];
                }
              }
            }

            offset += item_size;
          }
        } else {
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
          if (!ctx.Attr<bool>("enable_scale_and_shift") && slot_dim <= 0) {
            EigenArrayMap<T>(y_data, C, N) =
                (ConstEigenArrayMap<T>(x->data<T>(), C, N).colwise() -
                 means_arr)
                    .colwise() *
                scales_arr;
          } else if (ctx.Attr<bool>("enable_scale_and_shift") &&
                     slot_dim <= 0) {
            const auto *scale_w = ctx.Input<Tensor>("scale_w");
            const auto *bias = ctx.Input<Tensor>("bias");
            ConstEigenVectorArrayMap<T> scale_w_arr(scale_w->data<T>(), C);
            ConstEigenVectorArrayMap<T> bias_arr(bias->data<T>(), C);

            Eigen::Array<T, Eigen::Dynamic, 1> new_scale =
                scales_arr * scale_w_arr;
            Eigen::Array<T, Eigen::Dynamic, 1> new_bias =
                bias_arr - means_arr * scales_arr * scale_w_arr;
            EigenArrayMap<T>(y_data, C, N) =
                (ConstEigenArrayMap<T>(x->data<T>(), C, N).colwise() *
                 new_scale)
                    .colwise() +
                new_bias;

          } else {
            const int item_size = x->numel() / N;
            const auto *scale_w = ctx.Input<Tensor>("scale_w");
            const auto *bias = ctx.Input<Tensor>("bias");
            const T *scale_w_data = scale_w->data<T>();
            const T *bias_data = bias->data<T>();
            // location of show number in one embedding
            int offset = 0;
            for (int k = 0; k < N; ++k) {
              for (int i = 0; i < item_size; i += slot_dim) {
                if (x_data[offset + i] > -min_precision &&
                    x_data[offset + i] < min_precision) {
                  // show = 0
                  memset(y_data + offset + i, 0, sizeof(T) * slot_dim);
                } else {
                  for (int j = i; j < i + slot_dim; ++j) {
                    y_data[offset + j] = ((x_data[offset + j] - means_data[j]) *
                                          scales_data[j]) *
                                             scale_w_data[j] +
                                         bias_data[j];
                  }
                }
              }  // end for i

              offset += item_size;
            }  // end for k
          }
405
        }
H
heqiaozhi 已提交
406 407 408
        break;
      }
      default:
409
        PADDLE_THROW(platform::errors::InvalidArgument(
Y
yaoxuefeng 已提交
410
            "Unknown storage order: %d, please use NCHW or NHWC", data_layout));
H
heqiaozhi 已提交
411 412 413 414 415 416 417 418 419 420
    }
  }
};

class DataNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
421
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "DataNormGrad");
422 423 424 425
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")),
                   "Input",
                   framework::GradVarName("Y"),
                   "DataNormGrad");
H
hutuxian 已提交
426
    PADDLE_ENFORCE_EQ(
427 428
        ctx->HasOutput("BatchSize"),
        true,
H
hutuxian 已提交
429 430 431
        platform::errors::NotFound(
            "Output(BatchSize) of DataNormGradOp should not be null."));
    PADDLE_ENFORCE_EQ(
432 433
        ctx->HasOutput("BatchSum"),
        true,
H
hutuxian 已提交
434 435 436
        platform::errors::NotFound(
            "Output(BatchSum) of DataNormGradOp should not be null."));
    PADDLE_ENFORCE_EQ(
437 438
        ctx->HasOutput("BatchSquareSum"),
        true,
H
hutuxian 已提交
439 440
        platform::errors::NotFound(
            "Output(BatchSquareSum) of DataNormGradOp should not be null."));
441 442
    OP_INOUT_CHECK(ctx->HasInput("Means"), "Input", "Means", "DataNormGrad");
    OP_INOUT_CHECK(ctx->HasInput("Scales"), "Input", "Scales", "DataNormGrad");
443 444
    bool enable_scale_and_shift =
        ctx->Attrs().Get<bool>("enable_scale_and_shift");
H
heqiaozhi 已提交
445
    // check output
446
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("BatchSize")),
447 448 449 450 451 452
                   "Output",
                   framework::GradVarName("BatchSize"),
                   "DataNormGrad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("BatchSum")),
                   "Output",
                   framework::GradVarName("BatchSum"),
453 454
                   "DataNormGrad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("BatchSquareSum")),
455 456
                   "Output",
                   framework::GradVarName("BatchSquareSum"),
457
                   "DataNormGrad");
H
heqiaozhi 已提交
458 459 460 461 462 463 464 465

    const auto x_dims = ctx->GetInputDim("X");
    const DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);

466 467 468
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
H
heqiaozhi 已提交
469 470 471
    ctx->SetOutputDim(framework::GradVarName("BatchSize"), {C});
    ctx->SetOutputDim(framework::GradVarName("BatchSum"), {C});
    ctx->SetOutputDim(framework::GradVarName("BatchSquareSum"), {C});
472 473 474 475 476
    if (enable_scale_and_shift) {
      const bool has_scale_grad =
          ctx->HasOutput(framework::GradVarName("scale_w"));
      const bool has_bias_grad = ctx->HasOutput(framework::GradVarName("bias"));

477 478
      PADDLE_ENFORCE_EQ((has_scale_grad == has_bias_grad),
                        true,
479 480 481 482
                        platform::errors::InvalidArgument(
                            "Output(Scale@GRAD) and Output(Bias@GRAD)"
                            "must be null or not be null at same time. "
                            "But now, has Scale@Grad=[%d], has Bias@GRAD=[%d]",
483 484
                            has_scale_grad,
                            has_bias_grad));
485 486 487 488 489
      if (has_scale_grad) {
        ctx->SetOutputDim(framework::GradVarName("scale_w"), {C});
        ctx->SetOutputDim(framework::GradVarName("bias"), {C});
      }
    }
H
heqiaozhi 已提交
490 491 492 493 494 495 496
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
    if (var == nullptr) {
497 498
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Y@GRAD can not be found for computation"));
H
heqiaozhi 已提交
499 500 501 502 503 504 505 506
    }
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
    if (t == nullptr) {
507 508
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Y@GRAD can not be found for computation"));
H
heqiaozhi 已提交
509 510 511
    }

    // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
512
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
H
heqiaozhi 已提交
513

H
heqiaozhi 已提交
514
#ifdef PADDLE_WITH_MKLDNN
515 516 517 518 519
    if (this->CanMKLDNNBeUsed(ctx, data_type)) {
      return framework::OpKernelType(data_type,
                                     ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
H
heqiaozhi 已提交
520 521 522
    }
#endif

523
    return framework::OpKernelType(data_type, ctx.GetPlace());
H
heqiaozhi 已提交
524 525 526 527
  }
};

template <typename T>
L
Leo Chen 已提交
528
class DataNormGradKernel<phi::CPUContext, T> : public framework::OpKernel<T> {
H
heqiaozhi 已提交
529 530 531 532 533 534 535 536 537 538 539 540 541 542
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scales = ctx.Input<Tensor>("Scales");
    const auto *means = ctx.Input<Tensor>("Means");

    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);

    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto &x_dims = x->dims();
543
    PADDLE_ENFORCE_EQ(
544 545
        x_dims.size(),
        2,
546
        platform::errors::InvalidArgument("The Input dim size should be 2"));
H
heqiaozhi 已提交
547 548 549 550 551
    const int N = x_dims[0];
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
    // init output
552 553 554 555
    Tensor *d_x = nullptr;
    if (ctx.HasOutput(framework::GradVarName("X"))) {
      d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    }
556

H
heqiaozhi 已提交
557 558 559 560 561 562
    auto *d_batch_size =
        ctx.Output<Tensor>(framework::GradVarName("BatchSize"));
    auto *d_batch_sum = ctx.Output<Tensor>(framework::GradVarName("BatchSum"));
    auto *d_batch_square_sum =
        ctx.Output<Tensor>(framework::GradVarName("BatchSquareSum"));

563 564 565 566 567
    const T *mean_data = means->data<T>();
    const T *inv_var_data = scales->data<T>();
    ConstEigenVectorArrayMap<T> mean_arr(mean_data, C);
    ConstEigenVectorArrayMap<T> inv_var_arr(inv_var_data, C);

568 569 570 571 572 573 574
    T *d_batch_size_data = d_batch_size->mutable_data<T>(ctx.GetPlace());
    T *d_batch_sum_data = d_batch_sum->mutable_data<T>(ctx.GetPlace());
    T *d_batch_square_sum_data =
        d_batch_square_sum->mutable_data<T>(ctx.GetPlace());
    EigenVectorArrayMap<T> d_batch_size_arr(d_batch_size_data, C);
    EigenVectorArrayMap<T> d_batch_sum_arr(d_batch_sum_data, C);
    EigenVectorArrayMap<T> d_batch_square_sum_arr(d_batch_square_sum_data, C);
H
heqiaozhi 已提交
575 576 577
    d_batch_size_arr.setZero();
    d_batch_sum_arr.setZero();
    d_batch_square_sum_arr.setZero();
578 579
    const T *x_data = x->data<T>();
    const T *means_data = means->data<T>();
H
heqiaozhi 已提交
580 581

    const float epsilon = ctx.Attr<float>("epsilon");
582 583 584
    T min_precision = 1e-7f;
    const int slot_dim = ctx.Attr<int>("slot_dim");
    switch (data_layout) {  // it's two dimensions, make no difference
H
heqiaozhi 已提交
585 586 587 588 589 590
      case DataLayout::kNCHW:
      case DataLayout::kNHWC: {
        ConstEigenVectorArrayMap<T> scales_arr(scales->data<T>(), C);
        ConstEigenVectorArrayMap<T> means_arr(means->data<T>(), C);
        ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), C, N);
591 592 593
        if (d_x != nullptr) {
          EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()), C, N);
          d_x_arr.setZero();
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
          if (!ctx.Attr<bool>("enable_scale_and_shift")) {
            for (int nc = 0; nc < N; ++nc) {
              d_x_arr.col(nc) = d_y_arr.col(nc) * scales_arr;
            }
          } else {
            const auto *scale_w = ctx.Input<Tensor>("scale_w");
            auto *d_scale =
                ctx.Output<Tensor>(framework::GradVarName("scale_w"));
            auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("bias"));
            ConstEigenVectorArrayMap<T> scale_arr(scale_w->data<T>(), C);
            T *d_bias_data = nullptr;
            T *d_scale_data = nullptr;

            d_scale->mutable_data<T>(ctx.GetPlace());
            d_bias->mutable_data<T>(ctx.GetPlace());
            d_bias_data = d_bias->mutable_data<T>(ctx.GetPlace());
            d_scale_data = d_scale->mutable_data<T>(ctx.GetPlace());

            EigenVectorArrayMap<T> d_bias_arr(d_bias_data, C);
            EigenVectorArrayMap<T> d_scale_arr(d_scale_data, C);
            Tensor dy_sum;
            dy_sum.Resize({C});
            dy_sum.mutable_data<T>(ctx.GetPlace());
            EigenVectorArrayMap<T> dy_sum_arr(
                dy_sum.mutable_data<T>(ctx.GetPlace()), C);
            Tensor dy_mul_x_sub_mean_mul_invstd_sum;
            dy_mul_x_sub_mean_mul_invstd_sum.Resize({C});
            dy_mul_x_sub_mean_mul_invstd_sum.mutable_data<T>(ctx.GetPlace());
            EigenVectorArrayMap<T> dy_mul_x_sub_mean_mul_invstd_sum_arr(
                dy_mul_x_sub_mean_mul_invstd_sum.mutable_data<T>(
                    ctx.GetPlace()),
                C);

            dy_sum_arr.setZero();
            dy_mul_x_sub_mean_mul_invstd_sum_arr.setZero();

            if (slot_dim <= 0) {
              for (int n = 0; n < N; ++n) {
                dy_sum_arr += d_y_arr.col(n);
                dy_mul_x_sub_mean_mul_invstd_sum_arr +=
                    ((x_arr.col(n) - mean_arr) * inv_var_arr * d_y_arr.col(n));
              }
              if (d_scale && d_bias) {
                d_bias_arr = dy_sum_arr;
                d_scale_arr = dy_mul_x_sub_mean_mul_invstd_sum_arr;
              }
              for (int nc = 0; nc < N; ++nc) {
                d_x_arr.col(nc) = d_y_arr.col(nc) * scales_arr * scale_arr;
              }
            } else {
              int offset = 0;
              const int item_size = x->numel() / N;
              T *d_x_data = d_x->mutable_data<T>(ctx.GetPlace());
              T *d_scale_data = d_scale->mutable_data<T>(ctx.GetPlace());
              T *d_bias_data = d_bias->mutable_data<T>(ctx.GetPlace());
              const T *dy_data = d_y->data<T>();
              const T *scales_data = scales->data<T>();
              const T *scale_w_data = scale_w->data<T>();
              const T *x_data = x->data<T>();
              for (int i = 0; i < item_size; i++) {
                d_bias_data[i] = 0;
                d_scale_data[i] = 0;
              }
              for (int k = 0; k < N; ++k) {
                for (int i = 0; i < item_size; i += slot_dim) {
                  if (!(x_data[offset + i] > -min_precision &&
                        x_data[offset + i] < min_precision)) {
                    // show != 0
                    for (int j = i; j < i + slot_dim; ++j) {
                      d_x_data[offset + j] = dy_data[offset + j] *
                                             scales_data[j] * scale_w_data[j];
                      d_bias_data[j] += dy_data[offset + j];
                      d_scale_data[j] += (x_data[offset + j] - mean_data[j]) *
                                         inv_var_data[j] * dy_data[offset + j];
                    }
                  }
                }
                offset += item_size;
              }
            }
674
          }
H
heqiaozhi 已提交
675 676
        }

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
        if (slot_dim > 0 && N > 0) {
          // if slot_dim is set and batch size is larger than zero, we choose
          // to check if show number is zero, if so, skip update statistics.
          int offset = 0;
          const int item_size = x->numel() / N;
          for (int k = 0; k < N; ++k) {
            for (int i = 0; i < item_size; i += slot_dim) {
              if (!(x_data[offset + i] > -min_precision &&
                    x_data[offset + i] < min_precision)) {
                // show != 0
                for (int j = i; j < i + slot_dim; ++j) {
                  d_batch_size_data[j] += 1;
                  d_batch_sum_data[j] += x_data[offset + j];
                  d_batch_square_sum_data[j] +=
                      (x_data[offset + j] - means_data[j]) *
                      (x_data[offset + j] - means_data[j]);
                }
              }
            }
            offset += item_size;
          }

          for (int i = 0; i < item_size; i += slot_dim) {
            for (int j = i; j < i + slot_dim; ++j) {
              if (d_batch_size_data[j] >= 1) {
                d_batch_sum_data[j] /= d_batch_size_data[j];
                d_batch_square_sum_data[j] =
                    d_batch_square_sum_data[j] / d_batch_size_data[j] +
                    d_batch_size_data[j] * epsilon;
                d_batch_size_data[j] = 1;
              }
            }
          }
        } else {
          // calculate data sum and squre sum
          Eigen::Array<T, Eigen::Dynamic, 1> sample_sum(C);
          Eigen::Array<T, Eigen::Dynamic, 1> sample_square_sum(C);
          // calculate data sample sum and square sum
          sample_sum.setZero();
          sample_square_sum.setZero();
          for (int nc = 0; nc < N; ++nc) {
            sample_sum += x_arr.col(nc);
            sample_square_sum += (x_arr.col(nc) - means_arr).square();
          }
          // calculate gradient
          d_batch_size_arr.setConstant(N);
          d_batch_sum_arr = sample_sum;
          d_batch_square_sum_arr =
              sample_square_sum + d_batch_size_arr * epsilon;
H
heqiaozhi 已提交
726 727 728 729
        }
        break;
      }
      default:
730
        PADDLE_THROW(platform::errors::InvalidArgument(
Y
yaoxuefeng 已提交
731 732
            "Unknown storage order: %s, please use NCHW or NHWC",
            data_layout_str));
H
heqiaozhi 已提交
733 734 735 736
    }
  }
};

H
hong 已提交
737 738
template <typename T>
class DataNormGradMaker : public framework::SingleGradOpMaker<T> {
H
heqiaozhi 已提交
739
 public:
H
hong 已提交
740
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
H
heqiaozhi 已提交
741 742

 protected:
743
  void Apply(GradOpPtr<T> op) const override {
H
heqiaozhi 已提交
744
    op->SetType("data_norm_grad");
H
hong 已提交
745 746 747
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));

748 749
    op->SetInput("scale_w", this->Input("scale_w"));
    op->SetInput("bias", this->Input("bias"));
H
hutuxian 已提交
750 751 752
    op->SetOutput("BatchSize", this->Input("BatchSize"));
    op->SetOutput("BatchSum", this->Input("BatchSum"));
    op->SetOutput("BatchSquareSum", this->Input("BatchSquareSum"));
H
hong 已提交
753 754 755 756 757 758 759 760 761 762
    op->SetInput("Scales", this->Output("Scales"));
    op->SetInput("Means", this->Output("Means"));

    op->SetAttrMap(this->Attrs());

    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("BatchSize"),
                  this->InputGrad("BatchSize"));
    op->SetOutput(framework::GradVarName("BatchSum"),
                  this->InputGrad("BatchSum"));
H
heqiaozhi 已提交
763
    op->SetOutput(framework::GradVarName("BatchSquareSum"),
H
hong 已提交
764
                  this->InputGrad("BatchSquareSum"));
765 766 767
    op->SetOutput(framework::GradVarName("scale_w"),
                  this->InputGrad("scale_w"));
    op->SetOutput(framework::GradVarName("bias"), this->InputGrad("bias"));
H
heqiaozhi 已提交
768 769 770 771 772 773 774
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
775 776 777
REGISTER_OPERATOR(data_norm,
                  ops::DataNormOp,
                  ops::DataNormOpMaker,
H
hong 已提交
778 779
                  ops::DataNormGradMaker<paddle::framework::OpDesc>,
                  ops::DataNormGradMaker<paddle::imperative::OpBase>);
H
heqiaozhi 已提交
780 781
REGISTER_OPERATOR(data_norm_grad, ops::DataNormGradOp);

L
Leo Chen 已提交
782 783 784 785 786 787
REGISTER_OP_CPU_KERNEL(data_norm,
                       ops::DataNormKernel<phi::CPUContext, float>,
                       ops::DataNormKernel<phi::CPUContext, double>);
REGISTER_OP_CPU_KERNEL(data_norm_grad,
                       ops::DataNormGradKernel<phi::CPUContext, float>,
                       ops::DataNormGradKernel<phi::CPUContext, double>);
788 789
REGISTER_OP_VERSION(data_norm).AddCheckpoint(
    R"ROC(
790
              upgrad data_norm op by adding scale_w to support scale and shift.)ROC",
791 792 793
    paddle::framework::compatible::OpVersionDesc().NewInput(
        "scale_w",
        "scale_w is used to do scale duirng data_norm like batchnorm "));