Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
165a7bd5
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
165a7bd5
编写于
4月 13, 2019
作者:
P
phlrain
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix shape check many; test=develop
上级
4267a81a
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
167 addition
and
58 deletion
+167
-58
paddle/fluid/operators/controlflow/tensor_array_read_write_op.cc
...fluid/operators/controlflow/tensor_array_read_write_op.cc
+4
-2
paddle/fluid/operators/data_norm_op.cc
paddle/fluid/operators/data_norm_op.cc
+6
-3
paddle/fluid/operators/huber_loss_op.cc
paddle/fluid/operators/huber_loss_op.cc
+18
-4
paddle/fluid/operators/layer_norm_op.cc
paddle/fluid/operators/layer_norm_op.cc
+9
-2
paddle/fluid/operators/metrics/precision_recall_op.cc
paddle/fluid/operators/metrics/precision_recall_op.cc
+29
-19
paddle/fluid/operators/minus_op.cc
paddle/fluid/operators/minus_op.cc
+12
-3
paddle/fluid/operators/modified_huber_loss_op.cc
paddle/fluid/operators/modified_huber_loss_op.cc
+25
-7
paddle/fluid/operators/space_to_depth_op.cc
paddle/fluid/operators/space_to_depth_op.cc
+38
-13
paddle/fluid/operators/tree_conv_op.cc
paddle/fluid/operators/tree_conv_op.cc
+26
-5
未找到文件。
paddle/fluid/operators/controlflow/tensor_array_read_write_op.cc
浏览文件 @
165a7bd5
...
...
@@ -81,8 +81,10 @@ class WriteToArrayInferShape : public framework::InferShapeBase {
public:
void
operator
()(
framework
::
InferShapeContext
*
context
)
const
override
{
PADDLE_ENFORCE
(
context
->
HasInput
(
"I"
),
"Must set the subscript index"
);
PADDLE_ENFORCE_EQ
(
framework
::
product
(
context
->
GetInputDim
(
"I"
)),
1
,
"The number of element of subscript index must be 1"
);
if
(
context
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
framework
::
product
(
context
->
GetInputDim
(
"I"
)),
1
,
"The number of element of subscript index must be 1"
);
}
if
(
!
context
->
HasInput
(
"X"
))
{
return
;
}
...
...
paddle/fluid/operators/data_norm_op.cc
浏览文件 @
165a7bd5
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/data_norm_op.h"
#include <memory>
#include <string>
#include "paddle/fluid/framework/data_layout.h"
#ifdef PADDLE_WITH_MKLDNN
...
...
@@ -65,9 +66,11 @@ class DataNormOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"BatchSize"
).
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"BatchSum"
).
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"BatchSquareSum"
).
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"BatchSize"
)[
0
],
C
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"BatchSum"
)[
0
],
C
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"BatchSquareSum"
)[
0
],
C
);
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"BatchSize"
)[
0
],
C
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"BatchSum"
)[
0
],
C
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"BatchSquareSum"
)[
0
],
C
);
}
ctx
->
SetOutputDim
(
"Y"
,
x_dims
);
ctx
->
SetOutputDim
(
"Means"
,
{
C
});
...
...
paddle/fluid/operators/huber_loss_op.cc
浏览文件 @
165a7bd5
...
...
@@ -31,13 +31,27 @@ class HuberLossOp : public framework::OperatorWithKernel {
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
y_dims
=
ctx
->
GetInputDim
(
"Y"
);
PADDLE_ENFORCE_EQ
(
x_dims
,
y_dims
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"The rank of Input(X) must be 2 and the shape is "
"[batch_size, 1]."
);
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
1
,
"Each row of Input(X) contains a real value, "
"so the 2nd dimension of Input(X) must be 1."
);
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
x_dims
,
y_dims
,
"Shape of X and Y should be same"
);
}
else
{
if
(
x_dims
[
0
]
!=
-
1
&&
y_dims
[
0
]
!=
-
1
)
{
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
y_dims
[
0
],
"The dim 0 of X and Y must be the same."
);
}
if
(
x_dims
[
1
]
!=
-
1
&&
y_dims
[
1
]
!=
-
1
)
{
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
y_dims
[
1
],
"The dim 1 of X and Y must be the same."
);
}
}
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
1
,
"Each row of Input(X) contains a real value, "
"so the 2nd dimension of Input(X) must be 1."
);
}
ctx
->
SetOutputDim
(
"Residual"
,
x_dims
);
ctx
->
SetOutputDim
(
"Out"
,
{
x_dims
[
0
],
1
});
...
...
paddle/fluid/operators/layer_norm_op.cc
浏览文件 @
165a7bd5
...
...
@@ -46,11 +46,18 @@ class LayerNormOp : public framework::OperatorWithKernel {
int
right
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
if
(
ctx
->
HasInput
(
"Scale"
))
{
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
).
size
(),
1
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
)[
0
],
right
);
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
)[
0
],
right
,
"scale should with right"
);
}
}
if
(
ctx
->
HasInput
(
"Bias"
))
{
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Bias"
).
size
(),
1
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Bias"
)[
0
],
right
);
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Bias"
)[
0
],
right
,
"bias should with right"
);
}
}
ctx
->
SetOutputDim
(
"Y"
,
ctx
->
GetInputDim
(
"X"
));
...
...
paddle/fluid/operators/metrics/precision_recall_op.cc
浏览文件 @
165a7bd5
...
...
@@ -40,30 +40,40 @@ class PrecisionRecallOp : public framework::OperatorWithKernel {
auto
max_probs_dims
=
ctx
->
GetInputDim
(
"MaxProbs"
);
auto
labels_dims
=
ctx
->
GetInputDim
(
"Labels"
);
PADDLE_ENFORCE_EQ
(
max_probs_dims
[
1
],
1
,
"Each instance contains one max probability, so the "
"shape of Input(MaxProbs) should be [batch_size, 1]."
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Indices"
),
max_probs_dims
,
"The shape of Input(Indices) should be [batch_size, 1]."
);
PADDLE_ENFORCE_EQ
(
max_probs_dims
[
0
],
labels_dims
[
0
],
"The 1st dimension of Input(MaxProbs) and "
"Input(Labels) both are batch_size and the shape should "
"be the same."
);
PADDLE_ENFORCE_EQ
(
labels_dims
[
1
],
1
,
"The 2nd dimension of Input(Labels) contains instance "
"label and the shape should be equal to 1."
);
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
max_probs_dims
[
1
],
1
,
"Each instance contains one max probability, so the "
"shape of Input(MaxProbs) should be [batch_size, 1]."
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Indices"
),
max_probs_dims
,
"The shape of Input(Indices) should bes same with max_probs_dims"
);
PADDLE_ENFORCE_EQ
(
max_probs_dims
[
0
],
labels_dims
[
0
],
"The 1st dimension of Input(MaxProbs) and "
"Input(Labels) both are batch_size and the shape should "
"be the same."
);
PADDLE_ENFORCE_EQ
(
labels_dims
[
1
],
1
,
"The 2nd dimension of Input(Labels) contains instance "
"label and the shape should be equal to 1."
);
}
if
(
ctx
->
HasInput
(
"Weights"
))
{
auto
weights_dims
=
ctx
->
GetInputDim
(
"Weights"
);
PADDLE_ENFORCE_EQ
(
weights_dims
,
framework
::
make_ddim
({
max_probs_dims
[
0
],
1
}),
"The shape of Input(Weights) should be "
"[batch_size, 1]."
);
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
weights_dims
,
framework
::
make_ddim
({
max_probs_dims
[
0
],
1
}),
"The shape of Input(Weights) should be "
"[batch_size, 1]."
);
}
}
if
(
ctx
->
HasInput
(
"StatesInfo"
))
{
auto
states_dims
=
ctx
->
GetInputDim
(
"StatesInfo"
);
PADDLE_ENFORCE_EQ
(
states_dims
,
framework
::
make_ddim
({
cls_num
,
4
}),
"The shape of Input(StatesInfo) should be "
"[class_number, 4]."
);
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
states_dims
,
framework
::
make_ddim
({
cls_num
,
4
}),
"The shape of Input(StatesInfo) should be "
"[class_number, 4]."
);
}
}
// Layouts of BatchMetrics and AccumMetrics both are:
...
...
paddle/fluid/operators/minus_op.cc
浏览文件 @
165a7bd5
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#include "paddle/fluid/operators/minus_op.h"
#include <memory>
#include <string>
#include <vector>
...
...
@@ -38,9 +39,17 @@ class MinusOp : public framework::OperatorWithKernel {
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
y_dims
=
ctx
->
GetInputDim
(
"Y"
);
PADDLE_ENFORCE_EQ
(
x_dims
,
y_dims
,
"Minus operator must take two tensor with same num of elements"
);
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
x_dims
,
y_dims
,
"Minus operator must take two tensor with same num of elements"
);
}
else
{
if
(
framework
::
product
(
x_dims
)
>
0
&&
framework
::
product
(
y_dims
)
>
0
)
{
PADDLE_ENFORCE_EQ
(
x_dims
,
y_dims
,
"Minus operator must take two tensor with same num of elements"
);
}
}
ctx
->
SetOutputDim
(
"Out"
,
x_dims
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
...
...
paddle/fluid/operators/modified_huber_loss_op.cc
浏览文件 @
165a7bd5
...
...
@@ -28,9 +28,25 @@ class ModifiedHuberLossOp : public framework::OperatorWithKernel {
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
y_dims
=
ctx
->
GetInputDim
(
"Y"
);
PADDLE_ENFORCE_EQ
(
x_dims
,
y_dims
,
"The shape of X and Y must be the same."
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"The tensor rank of X must be 2."
);
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
1
,
"The 2nd dimension of X must be 1."
);
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
x_dims
,
y_dims
,
"The shape of X and Y must be the same."
);
}
else
{
if
(
x_dims
[
0
]
!=
-
1
&&
y_dims
[
0
]
!=
-
1
)
{
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
y_dims
[
0
],
"The dim 0 of X and Y must be the same."
);
}
if
(
x_dims
[
1
]
!=
-
1
&&
y_dims
[
1
]
!=
-
1
)
{
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
y_dims
[
1
],
"The dim 1 of X and Y must be the same."
);
}
}
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
1
,
"The 2nd dimension of X must be 1."
);
}
ctx
->
SetOutputDim
(
"IntermediateVal"
,
x_dims
);
ctx
->
SetOutputDim
(
"Out"
,
{
x_dims
[
0
],
1
});
...
...
@@ -90,11 +106,13 @@ class ModifiedHuberLossGradOp : public framework::OperatorWithKernel {
auto
intermediate_dims
=
ctx
->
GetInputDim
(
"IntermediateVal"
);
auto
out_grad_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
));
PADDLE_ENFORCE_EQ
(
intermediate_dims
,
x_dims
,
"The shape of X and intermediate value must be the same."
);
PADDLE_ENFORCE_EQ
(
out_grad_dims
,
x_dims
,
"The shape of Input(Out@Grad) and X must be the same."
);
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
intermediate_dims
,
x_dims
,
"The shape of X and intermediate value must be the same."
);
PADDLE_ENFORCE_EQ
(
out_grad_dims
,
x_dims
,
"The shape of Input(Out@Grad) and X must be the same."
);
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
...
...
paddle/fluid/operators/space_to_depth_op.cc
浏览文件 @
165a7bd5
...
...
@@ -40,19 +40,44 @@ class SpaceToDepthOp : public framework::OperatorWithKernel {
auto
blocksize
=
ctx
->
Attrs
().
Get
<
int64_t
>
(
"blocksize"
);
PADDLE_ENFORCE_GT
(
blocksize
,
1
,
"The blocksize should be Greater than 1"
);
PADDLE_ENFORCE_GT
(
x_dims
[
1
],
0
,
"input channel should be Greater than 0"
);
PADDLE_ENFORCE_GT
(
x_dims
[
2
],
0
,
"input Height should be Greater than 0"
);
PADDLE_ENFORCE_GT
(
x_dims
[
3
],
0
,
"input Width should be Greater than 0"
);
PADDLE_ENFORCE_EQ
(
x_dims
[
1
]
%
(
blocksize
*
blocksize
),
0
,
"input channel should be divisible of the square of "
"SpaceToDepthOp blocksize"
);
PADDLE_ENFORCE_EQ
(
x_dims
[
2
]
%
(
blocksize
),
0
,
"input Height should be divisible of the square of "
"SpaceToDepthOp blocksize"
);
PADDLE_ENFORCE_EQ
(
x_dims
[
3
]
%
(
blocksize
),
0
,
"input Width should be divisible of the square of "
"SpaceToDepthOp blocksize"
);
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_GT
(
x_dims
[
1
],
0
,
"input channel should be Greater than 0"
);
PADDLE_ENFORCE_GT
(
x_dims
[
2
],
0
,
"input Height should be Greater than 0"
);
PADDLE_ENFORCE_GT
(
x_dims
[
3
],
0
,
"input Width should be Greater than 0"
);
PADDLE_ENFORCE_EQ
(
x_dims
[
1
]
%
(
blocksize
*
blocksize
),
0
,
"input channel should be divisible of the square of "
"SpaceToDepthOp blocksize"
);
PADDLE_ENFORCE_EQ
(
x_dims
[
2
]
%
(
blocksize
),
0
,
"input Height should be divisible of the square of "
"SpaceToDepthOp blocksize"
);
PADDLE_ENFORCE_EQ
(
x_dims
[
3
]
%
(
blocksize
),
0
,
"input Width should be divisible of the square of "
"SpaceToDepthOp blocksize"
);
}
else
{
if
(
x_dims
[
1
]
!=
-
1
)
{
PADDLE_ENFORCE_GT
(
x_dims
[
1
],
0
,
"input channel should be Greater than 0"
);
PADDLE_ENFORCE_EQ
(
x_dims
[
1
]
%
(
blocksize
*
blocksize
),
0
,
"input channel should be divisible of the square of "
"SpaceToDepthOp blocksize"
);
}
if
(
x_dims
[
2
]
!=
-
1
)
{
PADDLE_ENFORCE_GT
(
x_dims
[
2
],
0
,
"input Height should be Greater than 0"
);
PADDLE_ENFORCE_EQ
(
x_dims
[
2
]
%
(
blocksize
),
0
,
"input Height should be divisible of the square of "
"SpaceToDepthOp blocksize"
);
}
if
(
x_dims
[
3
]
!=
-
1
)
{
PADDLE_ENFORCE_GT
(
x_dims
[
3
],
0
,
"input Width should be Greater than 0"
);
PADDLE_ENFORCE_EQ
(
x_dims
[
3
]
%
(
blocksize
),
0
,
"input Width should be divisible of the square of "
"SpaceToDepthOp blocksize"
);
}
}
VLOG
(
3
)
<<
"SpaceToDepthOp operator x.shape="
<<
x_dims
<<
"Attribute blocksize"
<<
blocksize
<<
std
::
endl
;
...
...
paddle/fluid/operators/tree_conv_op.cc
浏览文件 @
165a7bd5
...
...
@@ -64,17 +64,38 @@ class TreeConvOp : public framework::OperatorWithKernel {
auto
edge_dims
=
ctx
->
GetInputDim
(
"EdgeSet"
);
auto
vector_dims
=
ctx
->
GetInputDim
(
"NodesVector"
);
auto
filter_dims
=
ctx
->
GetInputDim
(
"Filter"
);
PADDLE_ENFORCE_EQ
(
edge_dims
[
2
],
2
,
"Input(EdgeSet) dim[2] should be 2"
);
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
edge_dims
[
2
],
2
,
"Input(EdgeSet) dim[2] should be 2"
);
}
else
{
if
(
edge_dims
[
2
]
!=
-
1
)
{
PADDLE_ENFORCE_EQ
(
edge_dims
[
2
],
2
,
"Input(EdgeSet) dim[2] should be 2"
);
}
}
PADDLE_ENFORCE_EQ
(
edge_dims
.
size
(),
3
,
"The dimension of EdgeSet Tensor should be 3"
);
PADDLE_ENFORCE_EQ
(
vector_dims
.
size
(),
3
,
"The dimension of NodesVector Tensor should be 3"
);
PADDLE_ENFORCE_EQ
(
filter_dims
.
size
(),
4
,
"The dimension of Filter Tensor should be 4"
);
PADDLE_ENFORCE_EQ
(
filter_dims
[
1
],
3
,
"Input(Filter) dim[1] should be 3"
);
PADDLE_ENFORCE_EQ
(
filter_dims
[
0
],
vector_dims
[
2
],
"Input(Filter) dim[0] must equal to Input(NodesVector) dim[2]"
);
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
filter_dims
[
1
],
3
,
"Input(Filter) dim[1] should be 3"
);
PADDLE_ENFORCE_EQ
(
filter_dims
[
0
],
vector_dims
[
2
],
"Input(Filter) dim[0] must equal to Input(NodesVector) dim[2]"
);
}
else
{
if
(
filter_dims
[
1
]
!=
-
1
)
{
PADDLE_ENFORCE_EQ
(
filter_dims
[
1
],
3
,
"Input(Filter) dim[1] should be 3"
);
}
if
(
filter_dims
[
0
]
!=
-
1
&&
vector_dims
[
2
]
!=
-
1
)
{
PADDLE_ENFORCE_EQ
(
filter_dims
[
0
],
vector_dims
[
2
],
"Input(Filter) dim[0] must equal to Input(NodesVector) dim[2]"
);
}
}
auto
output_dims
=
framework
::
make_ddim
(
{
vector_dims
[
0
],
vector_dims
[
1
],
filter_dims
[
2
],
filter_dims
[
3
]});
ctx
->
SetOutputDim
(
"Out"
,
output_dims
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录