io.py 42.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
16 17
import copyreg
import os
18
import pickle
19
import sys
20 21 22
import warnings
from collections.abc import Iterable

W
WeiXin 已提交
23
import numpy as np
24

25 26 27 28 29
import paddle

# deprecated module import
from paddle import fluid
from paddle.fluid import core
30 31 32 33 34
from paddle.fluid.dygraph.io import (
    INFER_MODEL_SUFFIX,
    INFER_PARAMS_SUFFIX,
    _construct_params_and_buffers,
    _construct_program_holders,
35 36
)
from paddle.fluid.framework import (
37 38 39
    EagerParamBase,
    ParamBase,
    Program,
40
    Variable,
41
    _current_expected_place,
42 43
    _dygraph_tracer,
    _non_static_mode,
44
    _varbase_creator,
45
)
46 47 48 49 50 51 52
from paddle.fluid.io import _is_file_path, _is_memory_buffer
from paddle.fluid.io import _legacy_save as _legacy_static_save
from paddle.fluid.io import (
    _open_file_buffer,
    _pack_loaded_dict,
    _pickle_loads_mac,
    _unpack_saved_dict,
53
)
54
from paddle.jit.api import _SaveLoadConfig
55

56 57
__all__ = []

58 59 60 61 62

def _build_saved_state_dict(state_dict):
    save_dict = {}
    name_table = {}
    for key, value in state_dict.items():
63
        if isinstance(value, (Variable, core.VarBase, core.eager.Tensor)):
S
Steffy-zxf 已提交
64 65 66
            if value.type == core.VarDesc.VarType.VOCAB:
                save_dict[key] = value.value().get_map_tensor()
            else:
B
Baibaifan 已提交
67 68 69 70
                if not value.value().get_tensor()._is_initialized():
                    raise ValueError(
                        "The saved tensor is not initialized. If you used group sharded, please use save_group_sharded_model."
                    )
S
Steffy-zxf 已提交
71
                save_dict[key] = value.numpy()
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
            name_table[key] = value.name
        else:
            save_dict[key] = value
    save_dict["StructuredToParameterName@@"] = name_table

    return save_dict


def _load_state_dict_from_save_inference_model(model_path, config):
    # 1. load program desc & construct _ProgramHolder
    programs = _construct_program_holders(model_path, config.model_filename)

    # 2. load layer parameters & buffers
    with fluid.dygraph.guard():
        persistable_var_dict = _construct_params_and_buffers(
87 88
            model_path, programs, config.params_filename, append_suffix=False
        )
89 90 91 92 93 94

        # 3. construct state_dict
        load_param_dict = dict()
        for var_name in persistable_var_dict:
            load_param_dict[var_name] = persistable_var_dict[var_name].numpy()

95 96 97
        # if *.info exists, we can recover structured_name
        var_info_filename = str(config.params_filename) + ".info"
        var_info_path = os.path.join(model_path, var_info_filename)
98 99 100 101 102 103
        if os.path.exists(var_info_path):
            with open(var_info_path, 'rb') as f:
                extra_var_info = pickle.load(f)
            structured_para_dict = dict()
            for var_name in load_param_dict:
                structured_name = extra_var_info[var_name].get(
104 105 106 107 108 109
                    'structured_name', None
                )
                assert structured_name is not None, (
                    "Cannot find saved variable (%s)'s structured name in saved model."
                    % var_name
                )
110
                structured_para_dict[structured_name] = load_param_dict[
111 112
                    var_name
                ]
113 114 115 116 117 118
            load_param_dict = structured_para_dict

    return load_param_dict


def _load_state_dict_from_save_params(model_path):
119
    # Try to load all the files in the directory in VarBase format,
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    # the file name is used as the name of VarBase
    load_var_list = []

    # 1. load file names
    var_name_list = []
    for root, _, files in os.walk(model_path):
        for filename in files:
            file_path = os.path.join(root, filename)
            tmp_var_name = os.path.relpath(file_path, model_path)
            var_name = tmp_var_name.replace("\\", "/")
            var_name_list.append(var_name)

    # 2. create and load VarBase
    with fluid.dygraph.guard():
        for name in var_name_list:
            new_var = _varbase_creator(name=name, persistable=True)
            _dygraph_tracer().trace_op(
                type='load',
                inputs={},
                outputs={'Out': new_var},
140 141
                attrs={'file_path': os.path.join(model_path, name)},
            )
142 143 144 145 146 147 148 149 150 151
            load_var_list.append(new_var)

    # 3. construct state_dict
    load_param_dict = dict()
    for var in load_var_list:
        load_param_dict[var.name] = var.numpy()

    return load_param_dict


152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
# NOTE(chenweihang): [ Handling of use cases of API paddle.load ]
# `paddle.load` may be used to load saved results of:
# 1. Expected cases:
#   - need [full filename] when loading
#       - paddle.save
#       - paddle.static.save
#       - paddle.fluid.save_dygraph
#   - need [prefix] when loading [compatible for paddle 2.x]
#       - paddle.jit.save
#       - paddle.static.save_inference_model
#   - need [directory] when loading [compatible for paddle 1.x]
#       - paddle.fluid.io.save_inference_model
#       - paddle.fluid.io.save_params/save_persistable
# 2. Error cases:
#   - no error case
def _build_load_path_and_config(path, config):
    # NOTE(chenweihang): If both [prefix save format] and [directory save format] exist,
    # raise error, avoid confusing behavior
    prefix_format_path = path + INFER_MODEL_SUFFIX
    prefix_format_exist = os.path.exists(prefix_format_path)
    directory_format_exist = os.path.isdir(path)
    if prefix_format_exist and directory_format_exist:
        raise ValueError(
            "The %s.pdmodel and %s directory exist at the same time, "
            "don't know which one to load, please make sure that the specified target "
177 178
            "of ``path`` is unique." % (path, path)
        )
179 180 181
    elif not prefix_format_exist and not directory_format_exist:
        error_msg = "The ``path`` (%s) to load model not exists."
        # if current path is a prefix, and the path.pdparams or path.pdopt
182
        # is exist, users may want use `paddle.load` load the result of
183 184 185 186
        # `fluid.save_dygraph`, we raise error here for users
        params_file_path = path + ".pdparams"
        opti_file_path = path + ".pdopt"
        if os.path.exists(params_file_path) or os.path.exists(opti_file_path):
187 188 189 190
            error_msg += (
                " If you want to load the results saved by `fluid.save_dygraph`, "
                "please specify the full file name, not just the file name prefix. For "
                "example, it should be written as `paddle.load('model.pdparams')` instead of "
191
                "`paddle.load('model')`."
192
            )
193 194 195 196 197 198 199 200 201
        raise ValueError(error_msg % path)
    else:
        if prefix_format_exist:
            file_prefix = os.path.basename(path)
            model_path = os.path.dirname(path)
            if config.model_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``model_filename`` config does "
202 203
                    "not take effect."
                )
204 205 206 207 208
            config.model_filename = file_prefix + INFER_MODEL_SUFFIX
            if config.params_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``params_filename`` config does "
209 210
                    "not take effect."
                )
211 212 213 214 215 216 217 218 219
            config.params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            # Compatible with the old save_inference_model format
            model_path = path

    return model_path, config


def _parse_load_config(configs):
220
    supported_configs = [
221 222 223 224
        'model_filename',
        'params_filename',
        'keep_name_table',
        'return_numpy',
225
    ]
226 227 228 229 230 231

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.load` is not supported."
232 233
                % key
            )
234 235 236 237 238 239

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)
    inner_config.keep_name_table = configs.get('keep_name_table', None)
240
    inner_config.return_numpy = configs.get('return_numpy', False)
241 242 243 244

    return inner_config


245 246 247 248 249 250 251 252
def _parse_save_config(configs):
    supported_configs = ['use_binary_format', 'pickle_protocol']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.save` is not supported."
253 254
                % key
            )
255 256 257 258 259 260 261 262 263 264 265 266

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.use_binary_format = configs.get('use_binary_format', False)
    inner_config.pickle_protocol = configs.get('pickle_protocol', None)

    return inner_config


def _pickle_save(obj, f, protocol):
    # TODO(weixin):add support for BytesIO.
    if not isinstance(protocol, int):
267 268 269 270 271
        raise ValueError(
            "The 'protocol' MUST be `int`, but received {}".format(
                type(protocol)
            )
        )
272 273

    if protocol < 2 or protocol > 4:
274
        raise ValueError(
275 276
            "Expected 1<'protocol'<5, but received protocol={}".format(protocol)
        )
277

278
    def reduce_varbase(self):
279 280 281
        data = self.numpy()
        name = self.name

282
        return (tuple, ((name, data),))
283 284 285 286 287 288

    def reduce_LoDTensor(self):
        data = np.array(self)

        return (eval, ('data', {'data': data}))

289
    def reduce_Layer(self):
290
        raise ValueError(
291 292
            "paddle do not support saving `paddle.nn.Layer` object."
        )
293 294 295 296 297 298 299

    dispatch_table_layer = dict()

    def create_layer_dispatch_table(layer):
        dispatch_table_layer[layer.__class__] = reduce_Layer
        return layer

300 301 302
    _parse_every_object(
        obj, lambda v: isinstance(v, fluid.Layer), create_layer_dispatch_table
    )
303

304 305
    def add_dispatch_table():
        # This is not a good method, because the pickle module has been modified.
306 307
        pickle.dispatch_table[core.VarBase] = reduce_varbase
        pickle.dispatch_table[ParamBase] = reduce_varbase
308 309
        pickle.dispatch_table[core.eager.Tensor] = reduce_varbase
        pickle.dispatch_table[EagerParamBase] = reduce_varbase
310
        pickle.dispatch_table[core.LoDTensor] = reduce_LoDTensor
311
        pickle.dispatch_table.update(dispatch_table_layer)
312 313 314 315 316

    def pop_dispatch_table():
        pickle.dispatch_table.pop(core.VarBase)
        pickle.dispatch_table.pop(core.LoDTensor)
        pickle.dispatch_table.pop(ParamBase)
317 318
        pickle.dispatch_table.pop(core.eager.Tensor)
        pickle.dispatch_table.pop(EagerParamBase)
319 320
        for k in dispatch_table_layer:
            pickle.dispatch_table.pop(k)
321 322 323 324 325 326 327 328 329

    # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
    if sys.platform == 'darwin' and sys.version_info.major == 3:
        add_dispatch_table()
        pickle_bytes = pickle.dumps(obj)
        pop_dispatch_table()

        max_bytes = 2**30
        for i in range(0, len(pickle_bytes), max_bytes):
330
            f.write(pickle_bytes[i : i + max_bytes])
331
    else:
T
tianshuo78520a 已提交
332 333
        pickler = pickle.Pickler(f, protocol)
        pickler.dispatch_table = copyreg.dispatch_table.copy()
334

T
tianshuo78520a 已提交
335 336 337
        pickler.dispatch_table[core.VarBase] = reduce_varbase
        pickler.dispatch_table[core.LoDTensor] = reduce_LoDTensor
        pickler.dispatch_table[ParamBase] = reduce_varbase
338 339
        pickler.dispatch_table[core.eager.Tensor] = reduce_varbase
        pickler.dispatch_table[EagerParamBase] = reduce_varbase
T
tianshuo78520a 已提交
340 341
        pickler.dispatch_table.update(dispatch_table_layer)
        pickler.dump(obj)
342 343


344 345 346
def _contain_x(obj, condition_func):
    if isinstance(obj, core.SelectedRows):
        raise NotImplementedError(
347 348
            "`paddle.save` do not support saving 'SelectedRows'."
        )
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363

    if condition_func(obj):
        return True
    elif type(obj) in (dict, collections.OrderedDict, list, tuple):
        if type(obj) in (dict, collections.OrderedDict):
            keys = list(obj.keys())
        else:
            keys = range(len(obj))
        flag = False
        for key in keys:
            flag |= _contain_x(obj[key], condition_func)
            if flag:
                return True
        return flag
    else:
364
        return False
365 366 367 368 369 370


def _is_state_dict(obj):
    if isinstance(obj, dict):

        def condition(obj):
371
            return isinstance(
372 373 374 375 376 377 378 379 380 381
                obj,
                (
                    fluid.Layer,
                    Program,
                    core.VarBase,
                    core.eager.Tensor,
                    core.LoDTensor,
                    core.SelectedRows,
                ),
            )
382

383 384
        # If the value of a dict is a core.VarBase/LoDTensor or a dict
        # that does not contain a paddle type(Layer, Program, VarBase, LoDTensor, SelectedRows),
385 386 387 388 389 390
        # the dict is considered to be a state_ dict.
        for key, value in obj.items():
            if isinstance(value, dict):
                for k, v in value.items():
                    if _contain_x(v, condition):
                        return False
391
            elif not isinstance(
392 393
                value, (core.VarBase, core.eager.Tensor, core.LoDTensor)
            ):
394 395 396 397
                return False
        return True

    return False
398 399 400 401 402 403


def _transformed_from_varbase(obj):
    # In paddle2.1 version, VarBase is saved as tuple(tensor.name, tensor.numpy()).
    # When executing paddle.load, use this function to determine whether to restore to VarBase/LoDTensor.
    if isinstance(obj, tuple) and len(obj) == 2:
T
tianshuo78520a 已提交
404
        name_types = str
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
        if isinstance(obj[0], name_types) and isinstance(obj[1], np.ndarray):
            return True
    return False


def _transformed_from_lodtensor(obj):
    # In paddle2.1 version, LoDTensor is saved as np.array(tensor).
    # When executing paddle.load, use this function to determine whether to restore to VarBase/LoDTensor.
    if isinstance(obj, np.ndarray):
        return True
    return False


def _to_LodTensor(ndarray):
    if not isinstance(ndarray, np.ndarray):
        raise TypeError(
421 422 423 424
            'Type of `ndarray` should be numpy.ndarray, but received {}.'.format(
                type(ndarray)
            )
        )
425 426 427 428 429 430 431 432 433
    t = core.LoDTensor()
    place = _current_expected_place()
    t.set(ndarray, place)
    return t


def _tuple_to_tensor(obj, return_numpy):
    if return_numpy:
        return obj[1]
J
Jiabin Yang 已提交
434
    if _non_static_mode():
435 436 437 438 439 440 441 442 443 444 445 446
        t = paddle.to_tensor(obj[1])
        # This function does modify the name of return value.
        # Loading the same variable multiple times may cause the same name.
        t.name = obj[0]
        return t
    else:
        return _to_LodTensor(obj[1])


def _ndarray_to_tensor(obj, return_numpy):
    if return_numpy:
        return obj
J
Jiabin Yang 已提交
447
    if _non_static_mode():
448 449 450 451 452
        return paddle.to_tensor(obj)
    else:
        return _to_LodTensor(obj)


453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
def _lod_tensor2varbase(tensor):
    return_var = _varbase_creator()
    return_var.value().get_tensor().set(tensor, _current_expected_place())
    return return_var


def _parse_every_object(obj, condition_func, convert_func):
    if condition_func(obj):
        return convert_func(obj)
    elif type(obj) in (dict, collections.OrderedDict, list):
        if type(obj) == list:
            keys = range(len(obj))
        else:
            keys = list(obj.keys())
        for key in keys:
            if condition_func(obj[key]):
                obj[key] = convert_func(obj[key])
            else:
471 472 473
                obj[key] = _parse_every_object(
                    obj[key], condition_func, convert_func
                )
474 475 476
        return obj
    elif type(obj) == tuple:
        return tuple(
477 478
            _parse_every_object(list(obj), condition_func, convert_func)
        )
479 480 481
    elif type(obj) == set:
        return set(_parse_every_object(list(obj), condition_func, convert_func))
    else:
482
        if isinstance(obj, Iterable) and not isinstance(
483 484 485
            obj,
            (str, np.ndarray, core.VarBase, core.eager.Tensor, core.LoDTensor),
        ):
486
            raise NotImplementedError(
487 488 489 490
                "The iteratable objects supported are tuple, list, dict, OrderedDict, string. But received {}.".format(
                    type(obj)
                )
            )
491 492 493 494 495
        return obj


def _parse_load_result(obj, return_numpy):
    def is_layer(obj):
J
Jiabin Yang 已提交
496
        return isinstance(obj, fluid.Layer)
497 498 499 500 501 502 503

    def parse_layer(obj):
        temp_dict = _parse_load_result(obj.__dict__, False)
        obj.__dict__.update(temp_dict)
        return obj

    if _contain_x(obj, is_layer):
J
Jiabin Yang 已提交
504
        if not _non_static_mode():
505 506 507 508 509 510 511 512 513 514 515 516
            raise ValueError(
                "Layer can only be loaded in dynamic graph mode, but now in static graph mode."
            )

        _parse_every_object(obj, is_layer, parse_layer)

    def tuple_to_tensor(obj):
        return _tuple_to_tensor(obj, return_numpy=return_numpy)

    def ndarray_to_tensor(obj):
        return _ndarray_to_tensor(obj, return_numpy=return_numpy)

517
    # tuple(name, ndarry) was converted from varbase of paddle2.1,
518 519
    # and all tuple(name, ndarry) are converted to tensor.
    if _contain_x(obj, _transformed_from_varbase):
520 521 522
        return _parse_every_object(
            obj, _transformed_from_varbase, tuple_to_tensor
        )
523
    # If there is no tuple(name, ndary), it is considered to be saved by paddle2.0
524 525
    # or converted from LoDTensor, and all ndarrays are converted to tensor.
    else:
526 527 528
        return _parse_every_object(
            obj, _transformed_from_lodtensor, ndarray_to_tensor
        )
529 530


531 532
def _save_lod_tensor(tensor, file_name):
    if not tensor._is_initialized():
B
Baibaifan 已提交
533 534 535
        raise ValueError(
            "The saved tensor is not initialized. If you used group sharded, please use save_group_sharded_model firstly."
        )
536 537 538 539 540 541 542 543 544 545 546 547 548
    if _is_file_path(file_name):
        _seek = core.save_lod_tensor(tensor, file_name)
        # '_seek' is the end position of this tensor in the file.

    elif _is_memory_buffer(file_name):
        tensor_bytes = core.save_lod_tensor_to_memory(tensor)

        with _open_file_buffer(file_name, 'wb') as f:
            f.write(tensor_bytes)
            _seek = f.tell()

    else:
        raise NotImplementedError(
549 550 551 552
            'Only supports saving objects to file or BytesIO, but received {}'.format(
                type(file_name)
            )
        )
553 554 555 556 557
    return _seek


def _load_lod_tensor(file_name):
    temp_t = paddle.fluid.core.LoDTensor()
558 559 560 561 562 563 564 565 566 567 568 569
    if _is_file_path(file_name):
        # '_seek' is the end position of this tensor in the file.
        _seek = paddle.fluid.core.load_lod_tensor(temp_t, file_name)

    elif _is_memory_buffer(file_name):
        with _open_file_buffer(file_name, 'rb') as f:
            tensor_bytes = f.read()
            paddle.fluid.core.load_lod_tensor_from_memory(temp_t, tensor_bytes)
            _seek = f.tell()

    else:
        raise NotImplementedError(
570 571 572 573
            'Only supports load objects from file or BytesIO, but received {}'.format(
                type(file_name)
            )
        )
574

575 576 577 578 579 580
    return temp_t, _seek


def _save_selected_rows(selected_rows, file_name):
    if not selected_rows.get_tensor()._is_initialized():
        raise ValueError("The saved tensor is not initialized.")
581 582 583 584 585 586 587 588 589 590 591
    if _is_file_path(file_name):
        # '_seek' is the end position of this SelectedRows in the file.
        _seek = core.save_selected_rows(selected_rows, file_name)

    elif _is_memory_buffer(file_name):
        selected_rows_bytes = core.save_selected_rows_to_memory(selected_rows)
        with _open_file_buffer(file_name, 'wb') as f:
            f.write(selected_rows_bytes)
            _seek = f.tell()
    else:
        raise NotImplementedError(
592 593 594 595
            'Only supports saving objects to file or BytesIO, but received {}'.format(
                type(file_name)
            )
        )
596 597 598 599 600
    return _seek


def _load_selected_rows(file_name):
    temp_sr = core.SelectedRows()
601 602 603 604 605 606 607 608
    if _is_file_path(file_name):
        # '_seek' is the end position of this SelectedRows in the file.
        _seek = core.load_selected_rows(temp_sr, file_name)

    elif _is_memory_buffer(file_name):
        with _open_file_buffer(file_name, 'rb') as f:
            selected_rows_bytes = f.read()
            paddle.fluid.core.load_selected_rows_from_memory(
609 610
                temp_sr, selected_rows_bytes
            )
611 612 613 614
        _seek = f.tell()

    else:
        raise NotImplementedError(
615 616 617 618
            'Only supports load objects from file or BytesIO, but received {}'.format(
                type(file_name)
            )
        )
619

620 621 622 623 624 625 626 627
    return temp_sr, _seek


def _save_binary_var(obj, path):
    if isinstance(obj, core.LoDTensor):
        _save_lod_tensor(obj, path)
    elif isinstance(obj, core.SelectedRows):
        _save_selected_rows(obj, path)
628
    elif isinstance(obj, (core.VarBase, core.eager.Tensor)):
629
        _save_lod_tensor(obj.value().get_tensor(), path)
630 631 632
    else:
        # Since the concept of 'Tensor' is only exposed to users, the error message can only contain tensor instead of 'LoDTensor' or 'SelectedRows'
        raise NotImplementedError(
633 634 635 636
            "When use_binary_format = True, `paddle.save`  expected Tensor, but received {}.".format(
                type(obj)
            )
        )
637 638


639
def save(obj, path, protocol=4, **configs):
640 641
    '''
    Save an object to the specified path.
642

643
    Note:
644
        Now supports saving ``state_dict`` of Layer/Optimizer, Tensor and nested structure containing Tensor, Program.
645

646
    Note:
647 648 649
        Different from ``paddle.jit.save``, since the save result of ``paddle.save`` is a single file,
        there is no need to distinguish multiple saved files by adding a suffix. The argument ``path``
        of ``paddle.save`` will be directly used as the saved file name instead of a prefix.
650
        In order to unify the saved file name format, we recommend using the paddle standard suffix:
651 652
        1. for ``Layer.state_dict`` , recommend to use ``.pdparams`` ;
        2. for ``Optimizer.state_dict`` , recommend to use ``.pdopt`` .
653
        For specific examples, please refer to API code examples.
654

655 656
    Args:
        obj(Object) : The object to be saved.
657 658
        path(str|BytesIO) : The path/buffer of the object to be saved.
          If saved in the current directory, the input path string will be used as the file name.
659
        protocol(int, optional): The protocol version of pickle module must be greater than 1 and less than 5.
660
                                 Default: 4
661
        **configs(dict, optional): optional keyword arguments. The following options are currently supported:
662
          use_binary_format(bool): When the saved object is static graph variable, you can specify ``use_binary_for_var``.
663 664
          If True, save the file in the c++ binary format when saving a single static graph variable; otherwise, save it in pickle format.
          Default: False
665 666 667 668 669 670

    Returns:
        None

    Examples:
        .. code-block:: python
671
            :name: code-example-1
672

673
            # example 1: dynamic graph
674 675 676
            import paddle
            emb = paddle.nn.Embedding(10, 10)
            layer_state_dict = emb.state_dict()
677 678

            # save state_dict of emb
679
            paddle.save(layer_state_dict, "emb.pdparams")
680 681

            scheduler = paddle.optimizer.lr.NoamDecay(
682 683 684 685 686
                d_model=0.01, warmup_steps=100, verbose=True)
            adam = paddle.optimizer.Adam(
                learning_rate=scheduler,
                parameters=emb.parameters())
            opt_state_dict = adam.state_dict()
687 688

            # save state_dict of optimizer
689
            paddle.save(opt_state_dict, "adam.pdopt")
690 691 692
            # save weight of emb
            paddle.save(emb.weight, "emb.weight.pdtensor")

693 694 695
        .. code-block:: python
            :name: code-example-2

W
WeiXin 已提交
696
            # example 2: Save multiple state_dict at the same time
697
            import paddle
W
WeiXin 已提交
698 699 700 701 702 703 704 705 706
            from paddle import nn
            from paddle.optimizer import Adam

            layer = paddle.nn.Linear(3, 4)
            adam = Adam(learning_rate=0.001, parameters=layer.parameters())
            obj = {'model': layer.state_dict(), 'opt': adam.state_dict(), 'epoch': 100}
            path = 'example/model.pdparams'
            paddle.save(obj, path)

707 708
        .. code-block:: python
            :name: code-example-3
W
WeiXin 已提交
709 710

            # example 3: static graph
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
            import paddle
            import paddle.static as static

            paddle.enable_static()

            # create network
            x = paddle.static.data(name="x", shape=[None, 224], dtype='float32')
            z = paddle.static.nn.fc(x, 10)

            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            prog = paddle.static.default_main_program()
            for var in prog.list_vars():
                if list(var.shape) == [224, 10]:
W
WeiXin 已提交
726
                    tensor = var.get_value()
727 728 729 730 731 732 733 734 735
                    break

            # save/load tensor
            path_tensor = 'temp/tensor.pdtensor'
            paddle.save(tensor, path_tensor)

            # save/load state_dict
            path_state_dict = 'temp/model.pdparams'
            paddle.save(prog.state_dict("param"), path_tensor)
W
WeiXin 已提交
736

737 738 739
        .. code-block:: python
            :name: code-example-4

W
WeiXin 已提交
740 741 742 743 744 745 746 747 748 749 750
            # example 4: save program
            import paddle

            paddle.enable_static()

            data = paddle.static.data(
                name='x_static_save', shape=(None, 224), dtype='float32')
            y_static = z = paddle.static.nn.fc(data, 10)
            main_program = paddle.static.default_main_program()
            path = "example/main_program.pdmodel"
            paddle.save(main_program, path)
751

752 753
        .. code-block:: python
            :name: code-example-5
754 755 756 757 758 759 760 761 762 763 764 765 766

            # example 5: save object to memory
            from io import BytesIO
            import paddle
            from paddle.nn import Linear
            paddle.disable_static()

            linear = Linear(5, 10)
            state_dict = linear.state_dict()
            byio = BytesIO()
            paddle.save(state_dict, byio)
            tensor = paddle.randn([2, 3], dtype='float32')
            paddle.save(tensor, byio)
767

768 769 770 771 772 773 774 775
    '''
    if _is_file_path(path):
        # 1. input check
        filename = os.path.basename(path)
        if filename == "":
            raise ValueError(
                "The input path MUST be format of dirname/filename "
                "[dirname\\filename in Windows system], but received "
776 777
                "filename is empty string."
            )
778 779 780 781 782 783 784

        # 2. save object
        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname)
    elif not _is_memory_buffer(path):
        raise ValueError(
785 786 787 788
            "only supports saving objects to file and `BytesIO`, but got {}".format(
                type(path)
            )
        )
789 790 791 792 793

    config = _parse_save_config(configs)

    if not isinstance(config.use_binary_format, bool):
        raise TypeError(
794 795 796 797
            "Type of `use_binary_format` should be bool, but received {}.".format(
                type(config.use_binary_format)
            )
        )
798

799 800
    if config.use_binary_format:
        _save_binary_var(obj, path)
801
    else:
802 803 804 805 806 807
        # `protocol` need to be used, `pickle_protocol` is a deprecated arg.
        if config.pickle_protocol is not None:
            protocol = config.pickle_protocol
            warnings.warn(
                "'pickle_protocol' is a deprecated argument. Please use 'protocol' instead."
            )
808

809 810
        if isinstance(obj, Program):
            obj.desc.flush()
811
            with _open_file_buffer(path, "wb") as f:
812
                f.write(obj.desc.serialize_to_string())
813 814

        elif _is_state_dict(obj):
J
Jiabin Yang 已提交
815
            if _non_static_mode():
816 817 818 819
                _legacy_save(obj, path, protocol)
            else:
                _legacy_static_save(obj, path, protocol)
        else:
820
            with _open_file_buffer(path, 'wb') as f:
821
                _pickle_save(obj, f, protocol)
822

823 824

def _legacy_save(obj, path, protocol=2):
825 826 827 828
    # 1. input check
    if not isinstance(obj, dict):
        raise NotImplementedError(
            "Now only supports save state_dict of Layer or Optimizer, "
829 830
            "expect dict, but received %s." % type(obj)
        )
831 832 833 834

    if len(obj) == 0:
        warnings.warn("The input state dict is empty, no need to save.")

835
    if not isinstance(protocol, int):
836 837 838 839 840
        raise ValueError(
            "The 'protocol' MUST be `int`, but received {}".format(
                type(protocol)
            )
        )
W
WeiXin 已提交
841

842
    if protocol < 2 or protocol > 4:
843
        raise ValueError(
844 845
            "Expected 1<'protocol'<5, but received protocol={}".format(protocol)
        )
W
WeiXin 已提交
846

847 848 849 850 851 852
    if _is_file_path(path):
        filename = os.path.basename(path)
        if filename == "":
            raise ValueError(
                "The input path MUST be format of dirname/filename "
                "[dirname\\filename in Windows system], but received "
853 854
                "filename is empty string."
            )
855 856 857 858
        # 2. save object
        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname)
859

W
WeiXin 已提交
860 861 862
    if isinstance(obj, dict):
        saved_obj = _build_saved_state_dict(obj)

863
    saved_obj = _unpack_saved_dict(saved_obj, protocol)
864

865
    # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
866 867 868 869 870
    if (
        _is_file_path(path)
        and sys.platform == 'darwin'
        and sys.version_info.major == 3
    ):
871
        pickle_bytes = pickle.dumps(saved_obj, protocol=protocol)
872 873 874
        with open(path, 'wb') as f:
            max_bytes = 2**30
            for i in range(0, len(pickle_bytes), max_bytes):
875
                f.write(pickle_bytes[i : i + max_bytes])
876
    else:
877
        with _open_file_buffer(path, 'wb') as f:
878
            pickle.dump(saved_obj, f, protocol=protocol)
879 880


881
def load(path, **configs):
882 883 884
    '''
    Load an object can be used in paddle from specified path.

885
    Note:
886
        Now supports loading ``state_dict`` of Layer/Optimizer, Tensor and nested structure containing Tensor, Program.
887

888
    Note:
889 890 891
        In order to use the model parameters saved by paddle more efficiently,
        ``paddle.load`` supports loading ``state_dict`` of Layer from the result of
        other save APIs except ``paddle.save`` , but the argument ``path`` format is
892
        different:
893 894 895 896 897 898
        1. loading from ``paddle.static.save`` or ``paddle.Model().save(training=True)`` ,
        ``path`` needs to be a complete file name, such as ``model.pdparams`` or
        ``model.pdopt`` ;
        2. loading from ``paddle.jit.save`` or ``paddle.static.save_inference_model``
        or ``paddle.Model().save(training=False)`` , ``path`` need to be a file prefix,
        such as ``model/mnist``, and ``paddle.load`` will get information from
899
        ``mnist.pdmodel`` and ``mnist.pdiparams`` ;
900 901
        3. loading from paddle 1.x APIs ``paddle.fluid.io.save_inference_model`` or
        ``paddle.fluid.io.save_params/save_persistables`` , ``path`` need to be a
902 903
        directory, such as ``model`` and model is a directory.

904
    Note:
905 906 907 908
        If you load ``state_dict`` from the saved result of static mode API such as
        ``paddle.static.save`` or ``paddle.static.save_inference_model`` ,
        the structured variable name in dynamic mode will cannot be restored.
        You need to set the argument ``use_structured_name=False`` when using
909
        ``Layer.set_state_dict`` later.
910 911

    Args:
912 913
        path(str|BytesIO) : The path/buffer to load the target object. Generally, the path is the target
            file path. When loading state_dict from the saved result of the API used to save
914
            the inference model, the path may be a file prefix or directory.
915 916
        **configs (dict, optional): other load configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
917 918
            DO NOT use them. Default None.
            The following options are currently supported:
919 920 921 922 923 924
            (1) model_filename (str): The inference model file name of the paddle 1.x
            ``save_inference_model`` save format. Default file name is :code:`__model__` .
            (2) params_filename (str): The persistable variables file name of the paddle 1.x
            ``save_inference_model`` save format. No default file name, save variables separately
            by default.
            (3) return_numpy(bool): If specified as True, return tensor as numpy.ndarray, otherwise return tensor as paddle.Tensor.
925
            Default False.
926 927 928 929 930 931

    Returns:
        Object(Object): a target object can be used in paddle

    Examples:
        .. code-block:: python
932
            :name: code-example-1
933

934 935
            # example 1: dynamic graph
            import paddle
936 937
            emb = paddle.nn.Embedding(10, 10)
            layer_state_dict = emb.state_dict()
938 939

            # save state_dict of emb
940
            paddle.save(layer_state_dict, "emb.pdparams")
941 942

            scheduler = paddle.optimizer.lr.NoamDecay(
943 944 945 946 947
                d_model=0.01, warmup_steps=100, verbose=True)
            adam = paddle.optimizer.Adam(
                learning_rate=scheduler,
                parameters=emb.parameters())
            opt_state_dict = adam.state_dict()
948 949

            # save state_dict of optimizer
950
            paddle.save(opt_state_dict, "adam.pdopt")
951 952
            # save weight of emb
            paddle.save(emb.weight, "emb.weight.pdtensor")
953

954
            # load state_dict of emb
955
            load_layer_state_dict = paddle.load("emb.pdparams")
956
            # load state_dict of optimizer
957
            load_opt_state_dict = paddle.load("adam.pdopt")
958 959 960
            # load weight of emb
            load_weight = paddle.load("emb.weight.pdtensor")

961 962
        .. code-block:: python
            :name: code-example-2
963

W
WeiXin 已提交
964
            # example 2: Load multiple state_dict at the same time
965
            import paddle
W
WeiXin 已提交
966 967 968 969 970 971 972 973 974 975
            from paddle import nn
            from paddle.optimizer import Adam

            layer = paddle.nn.Linear(3, 4)
            adam = Adam(learning_rate=0.001, parameters=layer.parameters())
            obj = {'model': layer.state_dict(), 'opt': adam.state_dict(), 'epoch': 100}
            path = 'example/model.pdparams'
            paddle.save(obj, path)
            obj_load = paddle.load(path)

976 977
        .. code-block:: python
            :name: code-example-3
W
WeiXin 已提交
978 979

            # example 3: static graph
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
            import paddle
            import paddle.static as static

            paddle.enable_static()

            # create network
            x = paddle.static.data(name="x", shape=[None, 224], dtype='float32')
            z = paddle.static.nn.fc(x, 10)

            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            prog = paddle.static.default_main_program()
            for var in prog.list_vars():
                if list(var.shape) == [224, 10]:
W
WeiXin 已提交
995
                    tensor = var.get_value()
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
                    break

            # save/load tensor
            path_tensor = 'temp/tensor.pdtensor'
            paddle.save(tensor, path_tensor)
            load_tensor = paddle.load(path_tensor)

            # save/load state_dict
            path_state_dict = 'temp/model.pdparams'
            paddle.save(prog.state_dict("param"), path_tensor)
            load_state_dict = paddle.load(path_tensor)

1008 1009
        .. code-block:: python
            :name: code-example-4
W
WeiXin 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

            # example 4: load program
            import paddle

            paddle.enable_static()

            data = paddle.static.data(
                name='x_static_save', shape=(None, 224), dtype='float32')
            y_static = z = paddle.static.nn.fc(data, 10)
            main_program = paddle.static.default_main_program()
            path = "example/main_program.pdmodel"
            paddle.save(main_program, path)
            load_main = paddle.load(path)
            print(load_main)

1025 1026
        .. code-block:: python
            :name: code-example-5
W
WeiXin 已提交
1027

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
            # example 5: save object to memory
            from io import BytesIO
            import paddle
            from paddle.nn import Linear
            paddle.disable_static()

            linear = Linear(5, 10)
            state_dict = linear.state_dict()
            byio = BytesIO()
            paddle.save(state_dict, byio)
            tensor = paddle.randn([2, 3], dtype='float32')
            paddle.save(tensor, byio)
            byio.seek(0)
            # load state_dict
            dict_load = paddle.load(byio)

1044
    '''
1045

1046
    if _is_memory_buffer(path) or os.path.isfile(path):
1047
        config = _parse_load_config(configs)
T
tianshuo78520a 已提交
1048
        exception_type = pickle.UnpicklingError
W
WeiXin 已提交
1049
        try:
1050
            with _open_file_buffer(path, 'rb') as f:
W
WeiXin 已提交
1051
                # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
1052 1053 1054 1055 1056
                if (
                    _is_file_path(path)
                    and sys.platform == 'darwin'
                    and sys.version_info.major == 3
                ):
W
WeiXin 已提交
1057 1058
                    load_result = _pickle_loads_mac(path, f)
                else:
T
tianshuo78520a 已提交
1059
                    load_result = pickle.load(f, encoding='latin1')
1060

W
WeiXin 已提交
1061 1062
                # TODO(weixin):If `obj` is any object, the judgment condition should be more precise.
                if isinstance(load_result, dict):
1063
                    load_result = _pack_loaded_dict(load_result)
W
WeiXin 已提交
1064 1065 1066 1067
                    # paddle2.0: paddle.save/load
                    if "StructuredToParameterName@@" in load_result:

                        for key in load_result["StructuredToParameterName@@"]:
S
Steffy-zxf 已提交
1068 1069
                            if isinstance(load_result[key], np.ndarray):
                                load_result[key] = _ndarray_to_tensor(
1070 1071
                                    load_result[key], config.return_numpy
                                )
W
WeiXin 已提交
1072

1073 1074 1075 1076
                        if (
                            not config.keep_name_table
                            and "StructuredToParameterName@@" in load_result
                        ):
W
WeiXin 已提交
1077 1078 1079
                            del load_result["StructuredToParameterName@@"]
                    else:
                        # paddle2.1 static.save/load
1080
                        load_result = _parse_load_result(
1081 1082
                            load_result, config.return_numpy
                        )
1083 1084

                else:
1085 1086 1087
                    load_result = _parse_load_result(
                        load_result, config.return_numpy
                    )
1088 1089 1090 1091 1092 1093 1094 1095

        except exception_type as msg_pickle:
            try:
                tensor, _ = _load_selected_rows(path)
                return tensor
            except:
                try:
                    tensor, _ = _load_lod_tensor(path)
1096 1097 1098
                    if config.return_numpy:
                        return np.array(tensor)
                    else:
J
Jiabin Yang 已提交
1099
                        if _non_static_mode():
1100 1101
                            return _lod_tensor2varbase(tensor)
                        return tensor
1102 1103
                except:
                    try:
1104
                        with _open_file_buffer(path, "rb") as f:
1105 1106
                            program_desc_str = f.read()
                            program = Program.parse_from_string(
1107 1108
                                program_desc_str
                            )
1109 1110 1111 1112
                            return program
                    except:
                        raise ValueError(
                            "`paddle.load` can not parse the file:{}.".format(
1113 1114 1115
                                path
                            )
                        )
1116 1117 1118 1119 1120 1121 1122 1123

    else:
        load_result = _legacy_load(path, **configs)

    return load_result


def _legacy_load(path, **configs):
1124
    load_result = None
1125 1126
    config = _parse_load_config(configs)

1127
    if os.path.isfile(path) or _is_memory_buffer(path):
1128
        # we think path is file means this file is created by paddle.save
1129
        with _open_file_buffer(path, 'rb') as f:
T
tianshuo78520a 已提交
1130
            load_result = pickle.load(f, encoding='latin1')
1131
        load_result = _pack_loaded_dict(load_result)
1132 1133 1134 1135
        if (
            not config.keep_name_table
            and "StructuredToParameterName@@" in load_result
        ):
1136
            del load_result["StructuredToParameterName@@"]
1137 1138 1139
    else:
        # file prefix and directory are compatible cases
        model_path, config = _build_load_path_and_config(path, config)
1140 1141 1142 1143 1144
        # check whether model file exists
        if config.model_filename is None:
            model_filename = '__model__'
        else:
            model_filename = config.model_filename
1145
        model_file_path = os.path.join(model_path, model_filename)
1146 1147 1148 1149

        if os.path.exists(model_file_path):
            # Load state dict by `jit.save/io.save_inference_model` save format
            # NOTE(chenweihang): [ Compatibility of save_inference_model save format ]
1150 1151 1152
            # The model saved by `save_inference_model` does not completely correspond to
            # the information required by the `state_dict` under the dygraph.
            # `save_inference_model` not save structured name, we need to remind
1153
            # the user to configure the `use_structured_name` argument when `set_state_dict`
1154 1155
            # NOTE(chenweihang): `jit.save` doesn't save optimizer state
            load_result = _load_state_dict_from_save_inference_model(
1156 1157
                model_path, config
            )
1158 1159
        else:
            # load state dict by `io.save_params/persistables` save format
1160
            # TODO(chenweihang): [ Now only supports loading parameters separately ]
1161
            # If users save all parameters as one file, the [ variable.name -> variable ]
1162
            # mapping info will lost, so users need to give variable list, but users build
1163 1164
            # variable list in dygraph mode is difficult, we recommend users to use
            # paddle.static.load_program_state in this case
1165
            load_result = _load_state_dict_from_save_params(model_path)
1166 1167

    return load_result