beam_search.py 4.2 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
import paddle.v2 as paddle
from paddle.v2.config_base import Layer
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
from paddle.trainer_config_helpers.layers import RecurrentLayerGroupSetGenerator, Generator


class BaseGeneratedInputV2(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInputV2(BaseGeneratedInputV2):
    def __init__(self, size, embedding_name, embedding_size):
        super(GeneratedInputV2, self).__init__()
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size

    def after_real_step(self, input):
        return paddle.layer.max_id(input=input, name='__beam_search_predict__')

    def before_real_step(self):
        predict_id = paddle.layer.memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = paddle.layer.embedding(
            input=predict_id,
            size=self.embedding_size,
            param_attr=paddle.attr.ParamAttr(name=self.embedding_name))
        return trg_emb


class RecurrentLayerGroupSetGeneratorV2(Layer):
    def __init__(self, eos_name, max_length, beam_size, num_results_per_sample):
        self.eos_name = eos_name
        self.max_length = max_length
        self.beam_size = beam_size
        self.num_results_per_sample = num_results_per_sample
        super(RecurrentLayerGroupSetGeneratorV2, self).__init__(
            name=eos_name, parent_layers={})

    def to_proto_impl(self, **kwargs):
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=self.eos_name,
                max_num_frames=self.max_length,
                beam_size=self.beam_size,
                num_results_per_sample=self.num_results_per_sample))
        return self

    def context_name(self):
        return self.eos_name + ".fake"

    def use_context_name(self):
        return True

@wrap_name_default()
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
                num_results_per_sample=None):
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    assert num_results_per_sample <= beam_size
        # logger.warning("num_results_per_sample should be less than beam_size")

    if isinstance(input, paddle.layer.StaticInputV2) or isinstance(input, BaseGeneratedInputV2):
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
        assert isinstance(each_input, paddle.layer.StaticInputV2) or isinstance(
            each_input, BaseGeneratedInputV2)
        if isinstance(each_input, BaseGeneratedInputV2):
            assert generated_input_index == -1
            generated_input_index = i
        else:
            real_input.append(each_input)

    assert generated_input_index != -1

    gipt = input[generated_input_index]
    assert isinstance(gipt, BaseGeneratedInputV2)

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
        generator = RecurrentLayerGroupSetGeneratorV2(
            eos_name, max_length, beam_size, num_results_per_sample)

        args = list(args)
        before_step_layer = gipt.before_real_step()
        before_step_layer.append_child(layer=generator,
                                       parent_names=[before_step_layer.name])
        args.insert(generated_input_index, before_step_layer)

        predict = gipt.after_real_step(step(*args))

        eos = paddle.layer.eos(input=predict, eos_id=eos_id, name=eos_name)
        predict.append_child(layer=eos, parent_names=[predict.name])

        return predict

    # tmp = paddle.layer.recurrent_group(
    #     step=__real_step__,
    #     input=real_input,
    #     reverse=False,
    #     name=name,
    #     is_generating=True)
    tmp = paddle.layer.recurrent_group(
        step=__real_step__,
        input=real_input,
        name=name)

    return tmp