import paddle.v2 as paddle from paddle.v2.config_base import Layer from paddle.trainer_config_helpers.default_decorators import wrap_name_default from paddle.trainer_config_helpers.layers import RecurrentLayerGroupSetGenerator, Generator class BaseGeneratedInputV2(object): def __init__(self): self.bos_id = None self.eos_id = None def before_real_step(self): raise NotImplementedError() def after_real_step(self, *args): raise NotImplementedError() class GeneratedInputV2(BaseGeneratedInputV2): def __init__(self, size, embedding_name, embedding_size): super(GeneratedInputV2, self).__init__() self.size = size self.embedding_name = embedding_name self.embedding_size = embedding_size def after_real_step(self, input): return paddle.layer.max_id(input=input, name='__beam_search_predict__') def before_real_step(self): predict_id = paddle.layer.memory( name='__beam_search_predict__', size=self.size, boot_with_const_id=self.bos_id) trg_emb = paddle.layer.embedding( input=predict_id, size=self.embedding_size, param_attr=paddle.attr.ParamAttr(name=self.embedding_name)) return trg_emb class RecurrentLayerGroupSetGeneratorV2(Layer): def __init__(self, eos_name, max_length, beam_size, num_results_per_sample): self.eos_name = eos_name self.max_length = max_length self.beam_size = beam_size self.num_results_per_sample = num_results_per_sample super(RecurrentLayerGroupSetGeneratorV2, self).__init__( name=eos_name, parent_layers={}) def to_proto_impl(self, **kwargs): RecurrentLayerGroupSetGenerator( Generator( eos_layer_name=self.eos_name, max_num_frames=self.max_length, beam_size=self.beam_size, num_results_per_sample=self.num_results_per_sample)) return self def context_name(self): return self.eos_name + ".fake" def use_context_name(self): return True @wrap_name_default() def beam_search(step, input, bos_id, eos_id, beam_size, max_length=500, name=None, num_results_per_sample=None): if num_results_per_sample is None: num_results_per_sample = beam_size assert num_results_per_sample <= beam_size # logger.warning("num_results_per_sample should be less than beam_size") if isinstance(input, paddle.layer.StaticInputV2) or isinstance(input, BaseGeneratedInputV2): input = [input] generated_input_index = -1 real_input = [] for i, each_input in enumerate(input): assert isinstance(each_input, paddle.layer.StaticInputV2) or isinstance( each_input, BaseGeneratedInputV2) if isinstance(each_input, BaseGeneratedInputV2): assert generated_input_index == -1 generated_input_index = i else: real_input.append(each_input) assert generated_input_index != -1 gipt = input[generated_input_index] assert isinstance(gipt, BaseGeneratedInputV2) gipt.bos_id = bos_id gipt.eos_id = eos_id def __real_step__(*args): eos_name = "__%s_eos_layer__" % name generator = RecurrentLayerGroupSetGeneratorV2( eos_name, max_length, beam_size, num_results_per_sample) args = list(args) before_step_layer = gipt.before_real_step() before_step_layer.append_child(layer=generator, parent_names=[before_step_layer.name]) args.insert(generated_input_index, before_step_layer) predict = gipt.after_real_step(step(*args)) eos = paddle.layer.eos(input=predict, eos_id=eos_id, name=eos_name) predict.append_child(layer=eos, parent_names=[predict.name]) return predict # tmp = paddle.layer.recurrent_group( # step=__real_step__, # input=real_input, # reverse=False, # name=name, # is_generating=True) tmp = paddle.layer.recurrent_group( step=__real_step__, input=real_input, name=name) return tmp