optimization_tuner.py 22.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18
import copy
import json
import logging

19
# import yaml
20 21 22
import os
import pathlib
import pickle
23 24
import shlex
import shutil
25
import subprocess
26 27
import sys
import time
28 29

import paddle
30 31 32 33 34 35
from paddle.distributed.auto_parallel.static.completion import Completer
from paddle.distributed.auto_parallel.static.dist_context import (
    DistributedContext,
)
from paddle.distributed.auto_parallel.static.partitioner import Partitioner
from paddle.distributed.auto_parallel.static.process_group import (
36 37
    clear_all_process_groups,
    get_all_process_groups,
38
    new_process_group,
39
)
40 41
from paddle.distributed.auto_parallel.static.reshard import Resharder
from paddle.distributed.auto_parallel.static.utils import (
42 43 44 45
    debug_program,
    set_grad_var_shape,
)
from paddle.distributed.passes import PassContext, new_pass
46 47
from paddle.static import append_backward, program_guard
from paddle.utils import unique_name
48

49
from ..utils import get_logger
50
from .algorithms import new_algorithm
51
from .config import TuningConfig
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
from .trial import TrialStatus


def _get_new_params_grads(target_program, ref_program, ref_params_grads):
    ref_block = ref_program.global_block()
    target_block = target_program.global_block()
    target_params_grads = []

    for p, g in ref_params_grads:
        # NOTE grad var might not be generated
        assert ref_block.has_var(p.name)
        assert target_block.has_var(p.name)
        new_p = target_block.var(p.name)
        if g:
            new_g = target_block.var(g.name)
        else:
            new_g = None

        target_params_grads.append((new_p, new_g))

    return target_params_grads


def _get_new_loss(target_program, ref_program, loss):
    ref_block = ref_program.global_block()
    target_block = target_program.global_block()
    assert ref_block.has_var(loss.name)

    return target_block.var(loss.name)


def parse_process_groups():
    group_map = {}
    all_process_groups = get_all_process_groups()
    for process_group in all_process_groups:
        group_map[process_group.id] = process_group.ranks
    return group_map


def get_metric(results):
    assert isinstance(
93
        results, dict
94
    ), f"results should be type of dictionary, but got {type(results)}."
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    if 'Throughtput' in results and isinstance(results['Throughtput'], float):
        return float(results['Throughtput'])
    else:
        return -1.0


def parse_results(results):
    if results['Throughtput'] > 0:
        return "Throughtput: {} step / s.".format(results['Throughtput'])
    et = results.get("ErrorType", None)
    if et == "ResourceExhaustedError":
        return "Fail with OOM"
    else:
        return "Fail with UNKWON ERROR"


# TODO only dependent on dist context
# all env need to be start a new pass are member of dist context
def _copy_context(ref_dist_context):
114
    # clear all process groups and recover the world process group
115
    clear_all_process_groups()
116 117
    ranks = []
    for process_mesh in ref_dist_context._process_meshes:
118
        ranks.extend(process_mesh.process_ids)
119
    new_process_group(list(set(ranks)))
120 121

    new_dist_context = DistributedContext()
122 123 124 125 126 127
    new_dist_context._serial_main_program = (
        ref_dist_context.serial_main_program.clone(for_test=False)
    )
    new_dist_context._serial_startup_program = (
        ref_dist_context.serial_startup_program.clone(for_test=False)
    )
128 129 130 131 132 133

    # mapping variable into new dist context
    if getattr(ref_dist_context, '_params_grads', None):
        new_dist_context._params_grads = _get_new_params_grads(
            new_dist_context.serial_main_program,
            ref_dist_context.serial_main_program,
134 135
            ref_dist_context._params_grads,
        )
136 137
    new_dist_context._serial_loss = _get_new_loss(
        new_dist_context.serial_main_program,
138 139 140
        ref_dist_context.serial_main_program,
        ref_dist_context.serial_loss,
    )
141 142 143 144 145 146 147

    for key, var_list in ref_dist_context._serial_feed_vars.items():
        new_var_list = []
        for var in var_list:
            block_idx = var.block.idx
            var_name = var.name
            var = new_dist_context._serial_main_program.blocks[
148 149
                block_idx
            ]._var_recursive(var_name)
150 151 152 153 154
            new_var_list.append(var)
        new_dist_context._serial_feed_vars[key] = new_var_list

    for key, var_list in ref_dist_context._serial_fetch_vars.items():
        new_var_list = []
155 156 157 158 159 160 161 162
        # metrics is a list of list
        if key == "metrics":
            for inner_var_list in var_list:
                new_inner_var_list = []
                for var in inner_var_list:
                    block_idx = var.block.idx
                    var_name = var.name
                    var = new_dist_context._serial_main_program.blocks[
163 164
                        block_idx
                    ]._var_recursive(var_name)
165 166 167 168 169 170 171
                    new_inner_var_list.append(var)
                new_var_list.append(new_inner_var_list)
        else:
            for var in var_list:
                block_idx = var.block.idx
                var_name = var.name
                var = new_dist_context._serial_main_program.blocks[
172 173
                    block_idx
                ]._var_recursive(var_name)
174
                new_var_list.append(var)
175 176 177 178
        new_dist_context._serial_fetch_vars[key] = new_var_list

    # copy information in forward and backward
    new_dist_context._serial_optimizer = copy.deepcopy(
179 180
        ref_dist_context.serial_optimizer
    )
181
    new_dist_context._dist_tensors_for_program = copy.deepcopy(
182 183
        ref_dist_context._dist_tensors_for_program
    )
184
    new_dist_context._dist_ops_for_program = copy.deepcopy(
185 186
        ref_dist_context._dist_ops_for_program
    )
187 188 189
    for pm in ref_dist_context.process_meshes:
        new_dist_context.add_process_mesh(pm)
    new_dist_context._dist_op_context = copy.deepcopy(
190 191
        ref_dist_context._dist_op_context
    )
192 193 194 195 196 197 198
    new_dist_context._block_state = copy.deepcopy(ref_dist_context.block_state)

    return new_dist_context


class OptimizationTuner:
    """
199
    OptimizationTuner is used to manage the tuning procedure of hyper-parameters (configs)
200 201 202 203 204 205 206 207 208 209 210 211
    of Optimization Pass in AutoParallel.
    """

    def __init__(
        self,
        dist_context,
        dataset,
        inputs_spec,
        labels_spec,
        batch_size,
        rank,
    ):
212
        self._config = TuningConfig(dist_context.strategy)
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
        # should not modify dist context from calling function
        self._baseline_dist_context = _copy_context(dist_context)
        self._baseline_completer = Completer(self._baseline_dist_context)

        self._rank = rank
        self._inputs_spec = inputs_spec
        self._labels_spec = labels_spec
        self._dataset = dataset
        self._batch_size = batch_size

        self._finished_trials = []
        self._best_metric = None
        self._best_iter = float("-inf")

        self._logger = get_logger(logging.INFO)

        self._build_programs_without_optimization()
        self._select_tuning_algorithm()

    @property
    def project_dir(self):
        dirname = self._config.project_dir
        if not os.path.exists(dirname):
            if self.rank == 0:
                pathlib.Path(dirname).mkdir(parents=True, exist_ok=True)
        return dirname

    @property
    def rank(self):
        return self._rank

    @property
    def device_id(self):
        return paddle.distributed.ParallelEnv().device_id

    # TODO Generate compelet program with all parts like forward, backward, update
    # as well as parallelism transformation.
    def _build_programs_without_optimization(self):
        serial_main_program = self._baseline_dist_context.serial_main_program
252 253 254
        serial_startup_program = (
            self._baseline_dist_context.serial_startup_program
        )
255 256 257 258 259
        serial_loss = self._baseline_dist_context.serial_loss

        with program_guard(serial_main_program, serial_startup_program):
            params_grads = append_backward(
                serial_loss,
260 261
                distop_context=self._baseline_dist_context.dist_op_context,
            )
262 263

        self._baseline_completer.complete_backward_annotation(
264 265
            serial_main_program
        )
266
        self._baseline_dist_context.block_state.parse_backward_blocks(
267 268
            serial_main_program
        )
269 270
        self._baseline_dist_context._params_grads = params_grads

271
        if self._config.debug:
272 273 274
            baseline_dir = os.path.join(self.project_dir, "baseline")
            if not os.path.exists(baseline_dir):
                pathlib.Path(baseline_dir).mkdir(parents=True, exist_ok=True)
275 276 277 278 279 280 281 282 283 284
            debug_program(
                self._baseline_dist_context._serial_main_program,
                baseline_dir,
                "main",
            )
            debug_program(
                self._baseline_dist_context._serial_startup_program,
                baseline_dir,
                "startup",
            )
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

    def _select_tuning_algorithm(self):
        selected_passes_set = self._config.tuning_passes_name
        algorithm_name = "_".join(sorted(selected_passes_set))
        self._algorithm = new_algorithm(algorithm_name, self._config)

    def _apply_optimization(self, trial):
        new_strategy = trial.space
        dist_context = _copy_context(self._baseline_dist_context)
        pass_context = PassContext()
        completer = Completer(dist_context)

        main_program = dist_context.serial_main_program
        startup_program = dist_context.serial_startup_program

        # applying optimization pass
301 302
        if new_strategy.amp.enable:
            config = copy.deepcopy(new_strategy.amp.to_dict())
303 304 305 306
            config["dist_context"] = dist_context
            config["params_grads"] = dist_context._params_grads
            # TODO AMP Pass should not use loss var
            config["loss"] = dist_context.serial_loss
307 308
            config["input_data"] = (
                self._baseline_dist_context.serial_feed_vars["inputs"]
309
                + self._baseline_dist_context.serial_feed_vars["labels"]
310
            )
311
            if config["dtype"] == "float16" and config["level"] == "o2":
312
                config["base_opt"] = dist_context.serial_optimizer
313
                auto_parallel_fp16_pass = new_pass("auto_parallel_fp16", config)
314 315 316
                auto_parallel_fp16_pass.apply(
                    [main_program], [startup_program], pass_context
                )
317
                dist_context._serial_loss = auto_parallel_fp16_pass.get_loss()
318 319
            else:
                auto_parallel_amp_pass = new_pass("auto_parallel_amp", config)
320 321 322
                auto_parallel_amp_pass.apply(
                    [main_program], [startup_program], pass_context
                )
323
                dist_context._serial_loss = auto_parallel_amp_pass.get_loss()
324

325 326
        if new_strategy.recompute.enable:
            config = copy.deepcopy(new_strategy.recompute.to_dict())
327 328 329
            config["dist_context"] = dist_context
            config["no_grad_set"] = None
            config["loss"] = dist_context.serial_loss
330 331 332 333 334 335
            auto_parallel_recompute_pass = new_pass(
                "auto_parallel_recompute", config
            )
            auto_parallel_recompute_pass.apply(
                [main_program], [startup_program], pass_context
            )
336 337 338

        # Do logical partition
        partitioner = Partitioner(dist_context, self.rank)
339 340 341 342 343 344 345
        (
            dist_main_prog,
            dist_startup_prog,
            dist_params_grads,
        ) = partitioner.partition(
            main_program, startup_program, dist_context._params_grads
        )
346 347 348 349

        # Generate optimizer
        # FIXME should be remove from apply pass after pass support optimizers
        with program_guard(dist_main_prog, dist_startup_prog):
350 351 352 353
            with unique_name.guard("opt_"):
                optimizer_ops = dist_context.serial_optimizer.apply_gradients(
                    dist_params_grads
                )
354 355 356 357
        completer.complete_update_annotation(dist_main_prog)

        # Do reshard process
        set_grad_var_shape(dist_main_prog, dist_context)
358 359 360 361 362 363 364
        resharder = Resharder(
            dist_main_prog,
            dist_startup_prog,
            self.rank,
            dist_context,
            dist_params_grads,
        )
365 366
        resharder.reshard()

367 368 369 370 371 372 373
        config = {}
        config["dist_context"] = dist_context
        config["global_rank"] = self.rank
        config["use_sharding"] = new_strategy.sharding.enable
        dp_pass = new_pass("auto_parallel_data_parallel_optimization", config)
        dp_pass.apply([dist_main_prog], [dist_startup_prog], pass_context)

374 375
        if new_strategy.sharding.enable:
            config = copy.deepcopy(new_strategy.sharding.to_dict())
376 377 378
            config["dist_context"] = dist_context
            config["params_grads"] = dist_params_grads
            config["global_rank"] = self.rank
379 380 381 382 383 384
            auto_parallel_sharding_pass = new_pass(
                "auto_parallel_sharding", config
            )
            auto_parallel_sharding_pass.apply(
                [dist_main_prog], [dist_startup_prog], pass_context
            )
385 386 387 388 389 390 391 392 393 394 395
            dist_params_grads = pass_context.get_attr("params_grads")

        # gradient clip
        config = copy.deepcopy(new_strategy.sharding.to_dict())
        config["dist_context"] = dist_context
        config["params_grads"] = dist_params_grads
        config["rank_id"] = self.rank
        auto_parallel_clip_pass = new_pass("auto_parallel_grad_clip", config)
        auto_parallel_clip_pass.apply(
            [dist_main_prog], [dist_startup_prog], pass_context
        )
396

397 398
        if new_strategy.gradient_merge.enable:
            config = copy.deepcopy(new_strategy.gradient_merge.to_dict())
399 400 401
            config["dist_context"] = dist_context
            config["params_grads"] = dist_params_grads
            auto_parallel_gradient_merge_pass = new_pass(
402 403 404 405 406 407 408 409 410
                "auto_parallel_gradient_merge_pass", config
            )
            auto_parallel_gradient_merge_pass.apply(
                [dist_main_prog], [dist_startup_prog], pass_context
            )
        trial.main_program, trial.startup_program = (
            dist_main_prog,
            dist_startup_prog,
        )
411 412 413 414 415 416
        return trial

    def _get_profile_context(self, trial, result_path):
        profile_ctx = {}

        profile_ctx['distributed_env'] = copy.deepcopy(
417 418
            paddle.distributed.ParallelEnv()
        )
419 420
        profile_ctx['group_map'] = parse_process_groups()
        profile_ctx[
421 422
            "loss_var_name"
        ] = self._baseline_dist_context.serial_loss.name
423
        profile_ctx[
424 425
            "main_program_decs"
        ] = trial.main_program.desc.serialize_to_string()
426
        profile_ctx[
427 428
            "startup_program_decs"
        ] = trial.startup_program.desc.serialize_to_string()
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
        self._dataset.batch_size = self._batch_size
        self._dataset.input_names = self._get_input_names()

        profile_ctx["dataset"] = self._dataset
        profile_ctx["result_filename"] = result_path

        return profile_ctx

    def _get_input_names(self):
        input_names = []
        for input_spec in self._inputs_spec[:] + self._labels_spec[:]:
            input_names.append(input_spec.name)
        return input_names

    def _launch_profile(self, ctx_path, trial_dir):
        if os.environ.get("WITH_COVERAGE", "OFF") == "ON":
            coverage_args = ["-m", "coverage", "run", "--branch", "-p"]
        else:
            coverage_args = []

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
        profile_args = " ".join(
            [
                "--rank",
                str(self.rank),
                "--device_id",
                str(self.device_id),
                "--ctx_filename",
                ctx_path,
                "--profile_start_step",
                str(self._config.profile_start_step),
                "--profile_end_step",
                str(self._config.profile_end_step),
            ]
        )
        cmd_args = (
464
            "-m paddle.distributed.auto_parallel.static.tuner.profiler"
465 466 467
            + " "
            + profile_args
        )
468 469 470 471
        cmd = [sys.executable, "-u"] + coverage_args + shlex.split(cmd_args)

        parent_env = copy.copy(os.environ.copy())
        # env flags need for profile
472
        new_env = {}
473 474 475 476 477
        new_env.update(parent_env)

        # TODO if any rank hang or fail, kill all processes
        self._logger.debug("Executing cmd:\n{} .".format(" ".join(cmd)))
        # new_process = subprocess.Popen(cmd, env=new_env)
478 479 480 481 482
        with open(
            os.path.join(trial_dir, "stdout.log" + str(self.rank)), "wb"
        ) as out, open(
            os.path.join(trial_dir, "stderr.log" + str(self.rank)), "wb"
        ) as err:
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
            result = subprocess.Popen(cmd, stdout=out, stderr=err, env=new_env)
            result.wait()
            out.flush()
            err.flush()
            os.fsync(out)
            os.fsync(err)

    def _profile_trial(self, trial):
        # Making working directory
        trial_dir = self._get_trial_dir(trial)
        if not os.path.exists(trial_dir):
            if self.rank == 0:
                pathlib.Path(trial_dir).mkdir(parents=True, exist_ok=True)
            else:
                while not os.path.exists(trial_dir):
                    pass
        ctx_filename = "profile_ctx." + str(self.rank)
        ctx_path = os.path.join(trial_dir, ctx_filename)
        result_path = os.path.join(trial_dir, "result.json")

        # Prepare Profile Context
        profile_ctx = self._get_profile_context(trial, result_path)
        with open(ctx_path, 'wb') as f:
            pickle.dump(profile_ctx, f, protocol=4)

508
        if self._config.debug:
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
            debug_program(trial.main_program, trial_dir, "main_program")
            debug_program(trial.startup_program, trial_dir, "startup_program")

        # Run
        self._launch_profile(ctx_path, trial_dir)

        # Load results
        try:
            with open(result_path, 'r') as fp:
                results = json.load(fp)
            return results
        except FileNotFoundError:
            Error_results = {"Throughtput": -1, "ErrorType": 'FatalError'}
            return Error_results

    def _evaluate_trial(self, trial):
525
        self._logger.info(f"Trial {trial.name} evaluation start.")
526 527 528 529 530 531 532
        self._apply_optimization(trial)

        if self._config.mode == "PROFILE":
            results = self._profile_trial(trial)

        elif self._config.mode == "COSTMODEL":
            raise NotImplementedError(
533 534
                "COSTMODEL mode for optimization tuning is not supported yet!"
            )
535
        else:
536
            raise NotImplementedError(
537
                f"invalid evaluation mode: {self._config.mode}"
538
            )
539

540 541 542 543 544
        self._logger.info(
            "Trial {} evaluation finish with {}.".format(
                trial.name, parse_results(results)
            )
        )
545 546 547 548 549 550
        return results

    def _update(self, i, trial, results):
        self._finished_trials.append(trial)

        cur_mertic = get_metric(results)
551
        if self._best_metric is None or cur_mertic > self._best_metric:
552 553 554 555 556 557 558 559 560 561 562
            self._best_metric = cur_mertic
            self._best_iter = i

    def _get_trial_dir(self, trial):
        return os.path.join(self.project_dir, trial.name)

    def get_best_config(self):
        """
        Return the best optimization configuration found in the tuning.

        Returns:
563
            A object of fleet.DistributedStrategy with best configuration.
564 565 566 567 568 569 570 571 572 573 574 575 576 577
        """
        assert self._best_iter >= 0, "The best configuration is not found yet !"
        best_trial = self._finished_trials[self._best_iter]
        return self._algorithm.get_config_from_trial(best_trial)

    def summary(self):
        """
        Display tuning result summary.
        """
        # TODO summary with the trial_name with metric_of_trial
        best_trial = self._finished_trials[self._best_iter]
        summary_ = """
Tuning Result Summary
Run total {} trials with {} min.
578
The best trial is: [{}], whose configuration is following:
579 580 581 582 583 584
        """.format(
            len(self._finished_trials),
            (time.time() - self._tuning_start_time) / 60,
            best_trial.name,
        )
        summary_ += "\n" + best_trial.summary() + "\n"
585 586 587 588 589
        self._logger.info(summary_)
        with open(os.path.join(self.project_dir, "summary.txt"), "w+") as fw:
            for line in summary_.split("\n"):
                fw.write(line + "\n")

590 591 592 593
        # full_strategy = self.get_best_config()
        # path = os.path.join(self.project_dir, "tuned_dist_strategy.yaml")
        # with open(path, 'w') as outfile:
        #     yaml.dump(full_strategy, outfile, default_flow_style=False)
594 595 596 597 598 599

    def clear(self):
        """
        Clear the temporary file generated in tuning procedure.
        """
        # TODO clear up zombie process created by tuning
600
        if not self._config.debug:
601 602 603 604 605 606
            for trial in self._finished_trials:
                trial_dir = self._get_trial_dir(trial)
                shutil.rmtree(trial_dir, ignore_errors=True)

    def tune(self):
        """
C
chenxujun 已提交
607
        Performs the search for best hyperparameter configurations
608
        for the selected optimization pass(es).
609 610 611 612 613 614 615
        """

        # step1: collect model info which might be used for
        # pruning the search space of the algorithm
        self._tuning_start_time = time.time()
        self._algorithm.collect_model_info(
            self._baseline_dist_context.serial_main_program,
616 617
            self._baseline_dist_context.serial_startup_program,
        )
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638

        # main search loop
        i = 0
        while i < self._config.max_num_trial:
            # step2: create a new trial
            trial = self._algorithm.next_trial()

            if trial.status == TrialStatus.STOPPED:
                break

            # step3: evaluate the trial
            results = self._evaluate_trial(trial)

            # step4: update the algorithm with last result,
            # which could be used by algorithm to pruning the
            # remaining search space.
            self._algorithm.update(results)
            self._update(i, trial, results)

            # early stop
            i += 1
639 640 641 642
            if (
                self._config.early_stop
                and self._config.early_stop <= i - self._best_iter
            ):
643
                self._logger.info(
644 645 646 647
                    "Early stop the Tuning since there is no better trial found within [{}] trials".format(
                        self._config.early_stop
                    )
                )
648 649 650 651 652 653
                break

        # step5: summary the best config and return
        self.summary()

        self.clear()